Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (9): 2763-2769.DOI: 10.11772/j.issn.1001-9081.2023091328
• Cyber security • Previous Articles Next Articles
Jiepo FANG1, Chongben TAO1,2(
)
Received:2023-09-28
Revised:2023-12-10
Accepted:2023-12-15
Online:2024-01-31
Published:2024-09-10
Contact:
Chongben TAO
About author:FANG Jiepo, born in 2000, M. S. candidate. His research interests include internet of vehicles security, artificial intelligence.
Supported by:通讯作者:
陶重犇
作者简介:方介泼(2000—),男,浙江温州人,硕士研究生,主要研究方向:车联网安全、人工智能基金资助:CLC Number:
Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks[J]. Journal of Computer Applications, 2024, 44(9): 2763-2769.
方介泼, 陶重犇. 应对零日攻击的混合车联网入侵检测系统[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2763-2769.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023091328
| 类别 | 原始样本数 | 平衡后训练集 样本数 | 测试集 样本数 | |
|---|---|---|---|---|
| Benign | 2 264 189 | 1 811 351 | 452 838 | |
| Bot | 1 935 | 50 000 | 387 | |
| DoS | DDoS | 380 566 | 304 453 | 76 113 |
| DoS GoldenEye | ||||
| DoS Hulk | ||||
| DoS Slow-httptest | ||||
| DoS Slowloris | ||||
| Heartbleed | ||||
| Port-Scan | 158 612 | 126 890 | 31 722 | |
| SSH | 5 870 | 50 000 | 1 174 | |
| FTP | 7 905 | 50 000 | 1 581 | |
| Infiltration | 36 | 0 | 36 | |
| Brute Force | 1 497 | 0 | 1 497 | |
| SQL Injection | 22 | 0 | 22 | |
| XSS | 656 | 0 | 656 | |
Tab. 1 Class tags and sample sizes for CICIDS-2017 dataset
| 类别 | 原始样本数 | 平衡后训练集 样本数 | 测试集 样本数 | |
|---|---|---|---|---|
| Benign | 2 264 189 | 1 811 351 | 452 838 | |
| Bot | 1 935 | 50 000 | 387 | |
| DoS | DDoS | 380 566 | 304 453 | 76 113 |
| DoS GoldenEye | ||||
| DoS Hulk | ||||
| DoS Slow-httptest | ||||
| DoS Slowloris | ||||
| Heartbleed | ||||
| Port-Scan | 158 612 | 126 890 | 31 722 | |
| SSH | 5 870 | 50 000 | 1 174 | |
| FTP | 7 905 | 50 000 | 1 581 | |
| Infiltration | 36 | 0 | 36 | |
| Brute Force | 1 497 | 0 | 1 497 | |
| SQL Injection | 22 | 0 | 22 | |
| XSS | 656 | 0 | 656 | |
| 类别 | 原始样本数 | 训练集样本数 | 测试集样本数 |
|---|---|---|---|
| Normal | 2 218 761 | 1 775 009 | 443 752 |
| Fuzzers | 24 246 | 19 397 | 4 849 |
| Analysis | 2 677 | 0 | 2 677 |
| Backdoors | 2 329 | 0 | 2 329 |
| DoS | 16 353 | 13 082 | 3 271 |
| Exploits | 44 525 | 35 620 | 8 905 |
| Generic | 215 481 | 172 385 | 43 096 |
| Reconnaissance | 13 987 | 11 190 | 2 797 |
| Shellcode | 1 511 | 0 | 1 511 |
| Worms | 174 | 0 | 174 |
Tab. 2 Class tags and sample sizes for UNSW-NB15 dataset
| 类别 | 原始样本数 | 训练集样本数 | 测试集样本数 |
|---|---|---|---|
| Normal | 2 218 761 | 1 775 009 | 443 752 |
| Fuzzers | 24 246 | 19 397 | 4 849 |
| Analysis | 2 677 | 0 | 2 677 |
| Backdoors | 2 329 | 0 | 2 329 |
| DoS | 16 353 | 13 082 | 3 271 |
| Exploits | 44 525 | 35 620 | 8 905 |
| Generic | 215 481 | 172 385 | 43 096 |
| Reconnaissance | 13 987 | 11 190 | 2 797 |
| Shellcode | 1 511 | 0 | 1 511 |
| Worms | 174 | 0 | 174 |
| 数据集 | 训练集类别 | 测试集类别 |
|---|---|---|
| CICIDS-2017 | Benign,Bot,DoS, Port-Scan,SSH,FTP | Benign,Bot,SSH,Port-Scan, FTP,XSS,Infiltration, Brute Force,SQL Injection,DoS |
| UNSW-NB15 | Normal,Fuzzers, Reconnaissance,DoS,Exploits,Generic | Normal,Fuzzers,Generic,Exploits,Reconnaissance,Analysis, Backdoors,Shellcode,Worms |
Tab. 3 Training set and test set setting for two datasets
| 数据集 | 训练集类别 | 测试集类别 |
|---|---|---|
| CICIDS-2017 | Benign,Bot,DoS, Port-Scan,SSH,FTP | Benign,Bot,SSH,Port-Scan, FTP,XSS,Infiltration, Brute Force,SQL Injection,DoS |
| UNSW-NB15 | Normal,Fuzzers, Reconnaissance,DoS,Exploits,Generic | Normal,Fuzzers,Generic,Exploits,Reconnaissance,Analysis, Backdoors,Shellcode,Worms |
| 攻击类别 | 样本数 | P% | R% | F% | F1% |
|---|---|---|---|---|---|
| Benign | 452 838 | 99.48 | 98.70 | 2.14 | 99.09 |
| Bot | 387 | 86.82 | 95.35 | 0.01 | 90.89 |
| DoS | 76 113 | 96.25 | 92.52 | 0.57 | 94.35 |
| Port-Scan | 31 722 | 90.86 | 98.20 | 0.60 | 94.39 |
| SSH | 1 174 | 98.55 | 98.72 | 0.00 | 98.64 |
| FTP | 1 581 | 97.58 | 96.77 | 0.01 | 97.17 |
| Unknown | 2 211 | 24.56 | 68.43 | 0.84 | 36.15 |
Tab. 4 Performance evaluation results of proposed model on CICIDS-2017 dataset
| 攻击类别 | 样本数 | P% | R% | F% | F1% |
|---|---|---|---|---|---|
| Benign | 452 838 | 99.48 | 98.70 | 2.14 | 99.09 |
| Bot | 387 | 86.82 | 95.35 | 0.01 | 90.89 |
| DoS | 76 113 | 96.25 | 92.52 | 0.57 | 94.35 |
| Port-Scan | 31 722 | 90.86 | 98.20 | 0.60 | 94.39 |
| SSH | 1 174 | 98.55 | 98.72 | 0.00 | 98.64 |
| FTP | 1 581 | 97.58 | 96.77 | 0.01 | 97.17 |
| Unknown | 2 211 | 24.56 | 68.43 | 0.84 | 36.15 |
| 攻击类别 | 样本数 | P% | R% | F% | F1% |
|---|---|---|---|---|---|
| Normal | 443 752 | 99.41 | 95.29 | 3.77 | 97.31 |
| Fuzzers | 4 849 | 32.12 | 73.80 | 1.54 | 44.76 |
| DoS | 3 271 | 87.32 | 85.08 | 0.08 | 86.19 |
| Exploits | 8 905 | 89.39 | 82.20 | 0.06 | 85.64 |
| Generic | 43 096 | 36.20 | 97.52 | 3.10 | 52.80 |
| Reconnaissance | 2 797 | 99.94 | 99.50 | 0.01 | 99.72 |
| Unknown | 6 691 | 87.70 | 55.39 | 0.11 | 67.89 |
Tab. 5 Performance evaluation results of proposed model on UNSW-NB15 dataset
| 攻击类别 | 样本数 | P% | R% | F% | F1% |
|---|---|---|---|---|---|
| Normal | 443 752 | 99.41 | 95.29 | 3.77 | 97.31 |
| Fuzzers | 4 849 | 32.12 | 73.80 | 1.54 | 44.76 |
| DoS | 3 271 | 87.32 | 85.08 | 0.08 | 86.19 |
| Exploits | 8 905 | 89.39 | 82.20 | 0.06 | 85.64 |
| Generic | 43 096 | 36.20 | 97.52 | 3.10 | 52.80 |
| Reconnaissance | 2 797 | 99.94 | 99.50 | 0.01 | 99.72 |
| Unknown | 6 691 | 87.70 | 55.39 | 0.11 | 67.89 |
| 模型 | CICIDS-2017 | UNSW-NB15 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| P% | R% | F% | F1% | T/ms | P/% | R/% | F/% | F1/% | T/ms | |
| SVM | 92.35 | 91.61 | 3.22 | 91.87 | 0.502 | 89.73 | 88.56 | 4.75 | 88.46 | 0.356 |
| KNN | 93.24 | 94.34 | 5.92 | 93.75 | 0.360 | 91.06 | 89.47 | 4.96 | 90.56 | 0.310 |
| LSTM | 97.40 | 97.12 | 1.93 | 96.78 | — | 91.22 | 92.55 | 1.67 | 91.43 | — |
| CVAE-EVT [ | 93.64 | 59.83 | 1.08 | 90.18 | — | — | — | — | — | — |
| Dual-IDS [ | — | — | — | — | — | 92.21 | 92.94 | 4.38 | 92.60 | — |
| SimpleRNN [ | 98.59 | 83.70 | 98.72 | 0.621 | 93.98 | 87.07 | — | 90.03 | 0.456 | |
| IDS-TA | 98.64 | 98.09 | 1.83 | 98.31 | 0.624 | 93.07 | 94.48 | 3.54 | 92.43 | 0.570 |
Tab. 6 Performance comparison among different models
| 模型 | CICIDS-2017 | UNSW-NB15 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| P% | R% | F% | F1% | T/ms | P/% | R/% | F/% | F1/% | T/ms | |
| SVM | 92.35 | 91.61 | 3.22 | 91.87 | 0.502 | 89.73 | 88.56 | 4.75 | 88.46 | 0.356 |
| KNN | 93.24 | 94.34 | 5.92 | 93.75 | 0.360 | 91.06 | 89.47 | 4.96 | 90.56 | 0.310 |
| LSTM | 97.40 | 97.12 | 1.93 | 96.78 | — | 91.22 | 92.55 | 1.67 | 91.43 | — |
| CVAE-EVT [ | 93.64 | 59.83 | 1.08 | 90.18 | — | — | — | — | — | — |
| Dual-IDS [ | — | — | — | — | — | 92.21 | 92.94 | 4.38 | 92.60 | — |
| SimpleRNN [ | 98.59 | 83.70 | 98.72 | 0.621 | 93.98 | 87.07 | — | 90.03 | 0.456 | |
| IDS-TA | 98.64 | 98.09 | 1.83 | 98.31 | 0.624 | 93.07 | 94.48 | 3.54 | 92.43 | 0.570 |
| 组成 | A | B | C | D | E | F |
|---|---|---|---|---|---|---|
| 自注意力 | √ | |||||
| 多头自注意力 | √ | √ | √ | √ | √ | |
| Feedforward | √ | √ | √ | √ | √ | √ |
| ADASYN-ENN | √ | √ | √ | √ | ||
| ANFIS | √ | √ | √ | |||
| MBGD | √ | √ | √ | √ | √ | |
| BGD | √ | |||||
| L1正则项 | √ |
Tab. 7 Composition of comparison models in ablation experiments
| 组成 | A | B | C | D | E | F |
|---|---|---|---|---|---|---|
| 自注意力 | √ | |||||
| 多头自注意力 | √ | √ | √ | √ | √ | |
| Feedforward | √ | √ | √ | √ | √ | √ |
| ADASYN-ENN | √ | √ | √ | √ | ||
| ANFIS | √ | √ | √ | |||
| MBGD | √ | √ | √ | √ | √ | |
| BGD | √ | |||||
| L1正则项 | √ |
| 模型 | P/% | F1/% | T/ms | 模型 | P/% | F1/% | T/ms |
|---|---|---|---|---|---|---|---|
| A | 91.30 | 79.66 | 0.424 | D | 98.59 | 97.44 | 0.610 |
| B | 95.19 | 80.23 | 0.608 | E | 97.78 | 95.26 | 0.621 |
| C | 97.86 | 81.52 | 0.614 | F | 98.64 | 98.31 | 0.624 |
Tab. 8 Results of ablation experiments
| 模型 | P/% | F1/% | T/ms | 模型 | P/% | F1/% | T/ms |
|---|---|---|---|---|---|---|---|
| A | 91.30 | 79.66 | 0.424 | D | 98.59 | 97.44 | 0.610 |
| B | 95.19 | 80.23 | 0.608 | E | 97.78 | 95.26 | 0.621 |
| C | 97.86 | 81.52 | 0.614 | F | 98.64 | 98.31 | 0.624 |
| 1 | 孙怡亭, 郭越, 李长进, 等. 可编程逻辑控制器的控制逻辑注入攻击入侵检测方法 [J]. 计算机应用, 2023, 43( 6): 1861- 1869. |
| SUN Y T, GUO Y, LI C J, et al. Intrusion detection method for control logic injection attack against programmable logic controller [J]. Journal of Computer Applications, 2023, 43( 6): 1861- 1869. | |
| 2 | WANG K, ZHANG A, SUN H, et al. Analysis of recent deep-learning-based intrusion detection methods for in-vehicle network[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24( 2): 1843- 1854. |
| 3 | 郝劭辰, 卫孜钻, 马垚, 等. 基于高效联邦学习算法的网络入侵检测模型[J]. 计算机应用, 2023, 43( 4): 1169- 1175. |
| HAO S C, WEI Z Z, MA Y, et al. Network intrusion detection model based on efficient federated learning algorithm [J]. Journal of Computer Applications, 2023, 43( 4): 1169- 1175. | |
| 4 | 董宁, 程晓荣, 张铭泉. 基于物联网平台的动态权重损失函数入侵检测系统[J]. 计算机应用, 2022, 42( 7): 2118- 2124. |
| DONG N, CHENG X R, ZHANG M Q. Intrusion detection system with dynamic weight loss function based on internet of things platform [J]. Journal of Computer Applications, 2022, 42( 7): 2118- 2124. | |
| 5 | ALANI M M, AWAD A I. An intelligent two-layer intrusion detection system for the internet of things [J]. IEEE Transactions on Industrial Informatics, 2023, 19( 1): 683- 692. |
| 6 | WU J, WANG Y, DAI H, et al. Adaptive bi-recommendation and self-improving network for heterogeneous domain adaptation-assisted IoT intrusion detection [EB/OL]. [ 2023-10-04]. . |
| 7 | 刘拥民, 杨钰津, 罗皓懿, 等. 基于双向循环生成对抗网络的无线传感网入侵检测方法[J]. 计算机应用, 2023, 43( 1): 160- 168. |
| LIU Y M, YANG Y J, LUO H Y, et al. Intrusion detection method for wireless sensor network based on bidirectional circulation generative adversarial network [J]. Journal of Computer Applications, 2023, 43( 1): 160- 168. | |
| 8 | WU J, DAI H, WANG Y, et al. Heterogeneous domain adaptation for IoT intrusion detection: a geometric graph alignment approach [EB/OL]. [ 2023-09-29]. . |
| 9 | ZAINUDIN A, AKTER R, KIM D-S, et al. Federated learning inspired low-complexity intrusion detection and classification technique for SDN-based industrial CPS [J]. IEEE Transactions on Network and Service Management, 2023, 20( 3): 2442- 2459. |
| 10 | ZHANG J, LUO C, CARPENTER M, et al. Federated learning for distributed IIoT intrusion detection using transfer approaches[J]. IEEE Transactions on Industrial Informatics, 2023, 19( 7): 8159- 8169. |
| 11 | FOUDA M, KSANTINI R, ELMEDANY W. A novel intrusion detection system for internet of healthcare things based on deep subclasses dispersion information [J]. IEEE Internet of Things Journal, 2023, 10( 10): 8395- 8407. |
| 12 | BENADDI H, IBRAHIMI K, BENSLIMANE A, et al. Robust enhancement of intrusion detection systems using deep reinforcement learning and stochastic game [J]. IEEE Transactions on Vehicular Technology, 2022, 71( 10): 11089- 11102. |
| 13 | DUAN G, LV H, WANG H, et al. Application of a dynamic line graph neural network for intrusion detection with semisupervised learning [J]. IEEE Transactions on Information Forensics and Security, 2022, 18: 699- 714. |
| 14 | KHAN I A, KESHK M, PI D, et al. Enhancing IIoT networks protection: a robust security model for attack detection in internet industrial control systems [J]. Ad Hoc Networks, 2022, 134: 102930. |
| 15 | VERKERKEN M, D’HOOGE L, SUDYANA D, et al. A novel multi-stage approach for hierarchical intrusion detection [J]. IEEE Transactions on Network and Service Management, 2023, 20( 3): 3915- 3929. |
| 16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000- 6010. |
| 17 | JANG J-S R. ANFIS: adaptive-network-based fuzzy inference system [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23( 3): 665- 685. |
| 18 | SHU J, ZHOU L, ZHANG W, et al. Collaborative intrusion detection for VANETs: a deep learning-based distributed SDN approach [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22( 7): 4519- 4530. |
| 19 | ZHOU M, HAN L, LU H, et al. Attack detection based on invariant state set for SDN-enabled vehicle platoon control system[J]. Vehicular Communications, 2022, 34: 100417. |
| 20 | DESTA A K, OHIRA S, ARAI I, et al. Rec-CNN: in-vehicle networks intrusion detection using convolutional neural networks trained on recurrence plots [J]. Vehicular Communications, 2022, 35: 100470. |
| 21 | ESKANDARI M, JANJUA Z H, VECCHIO M, et al. Passban IDS: an intelligent anomaly-based intrusion detection system for IoT edge devices [J]. IEEE Internet of Things Journal, 2020, 7( 8): 6882- 6897. |
| 22 | QIN H, YAN M, JI H. Application of controller area network (CAN) bus anomaly detection based on time series prediction [J]. Vehicular Communications, 2021, 27: 100291. |
| 23 | STAN O, COHEN A, ELOVICI Y, et al. Intrusion detection system for the MIL-STD-1553 communication bus [J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56( 4): 3010- 3027. |
| 24 | YANG J, CHEN X, CHEN S, et al. Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection [J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3538- 3553. |
| 25 | YANG L, MOUBAYED A, SHAMI A. MTH-IDS: a multitiered hybrid intrusion detection system for internet of vehicles [J]. IEEE Internet of Things Journal, 2022, 9( 1): 616- 632. |
| 26 | LOUK M H L, TAMA B A. Dual-IDS: a bagging-based gradient boosting decision tree model for network anomaly intrusion detection system [J]. Expert Systems with Applications, 2023, 213: 119030. |
| 27 | KASONGO S M. A deep learning technique for intrusion detection system using a recurrent neural networks based framework [J]. Computer Communications, 2023, 199: 113- 125. |
| [1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
| [2] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
| [3] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
| [4] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
| [5] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
| [6] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
| [7] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
| [8] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
| [9] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
| [10] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
| [11] | Xiting LYU, Jinghua ZHAO, Haiying RONG, Jiale ZHAO. Information diffusion prediction model based on Transformer and relational graph convolutional network [J]. Journal of Computer Applications, 2024, 44(6): 1760-1766. |
| [12] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
| [13] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
| [14] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. |
| [15] | Zhiyuan XI, Chao TANG, Anyang TONG, Wenjian WANG. Driver behavior recognition based on dual-path spatiotemporal network [J]. Journal of Computer Applications, 2024, 44(5): 1511-1519. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||