Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3363-3370.DOI: 10.11772/j.issn.1001-9081.2024091322
• Frontier and comprehensive applications • Previous Articles
Hong ZHANG1,2, Kangkang XIE1(), Xia NING1, Wanying SONG1,2
Received:
2024-09-13
Revised:
2024-11-28
Accepted:
2024-12-02
Online:
2025-03-14
Published:
2025-10-10
Contact:
Kangkang XIE
About author:
ZHANG Hong, born in 1972, Ph. D., associate professor. Her research interests include signal and information processing, computer vision, machine learning.Supported by:
通讯作者:
谢慷慷
作者简介:
张红(1972—),女,陕西西安人,副教授,博士,主要研究方向:信号与信息处理、计算机视觉、机器学习基金资助:
CLC Number:
Hong ZHANG, Kangkang XIE, Xia NING, Wanying SONG. Few-shot insulator defect detection method based on transfer learning[J]. Journal of Computer Applications, 2025, 45(10): 3363-3370.
张红, 谢慷慷, 宁霞, 宋婉莹. 基于迁移学习的小样本绝缘子缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3363-3370.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024091322
方法 | mAP50 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
split1 | split2 | split3 | 平均值 | |||||||||||||
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | ||
Meta-RCNN | 19.9 | 25.5 | 35.0 | 45.7 | 51.5 | 10.4 | 19.4 | 29.6 | 34.8 | 45.4 | 14.3 | 18.2 | 27.5 | 41.2 | 48.1 | 31.1 |
FSCE | 44.2 | 43.8 | 51.4 | 61.9 | 63.4 | 27.3 | 29.5 | 43.5 | 44.2 | 50.2 | 37.2 | 41.9 | 47.5 | 54.6 | 58.5 | 46.6 |
E-FSOD | 48.1 | 53.0 | 54.1 | 61.2 | 64.1 | 28.5 | 32.7 | 44.2 | 44.6 | 51.6 | 41.1 | 50.1 | 50.3 | 57.5 | 59.1 | 49.3 |
TFA | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 | 39.9 |
D&R | 40.1 | 51.7 | 55.7 | 61.8 | 65.4 | 30.7 | 39.0 | 42.5 | 46.6 | 51.7 | 37.9 | 47.1 | 51.7 | 56.8 | 59.5 | 49.2 |
ACNet | 55.3 | — | 54.9 | 62.8 | 61.1 | 34.4 | — | 49.6 | 53.3 | 50.3 | 50.2 | — | 54.7 | 55.1 | 59.4 | — |
本文方法 | 46.7 | 46.7 | 54.2 | 64.6 | 65.4 | 30.4 | 32.8 | 46.0 | 48.1 | 53.1 | 41.2 | 44.6 | 50.7 | 57.4 | 59.8 | 49.4 |
Tab. 1 Experimental results on PASCAL VOC new class dataset
方法 | mAP50 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
split1 | split2 | split3 | 平均值 | |||||||||||||
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | ||
Meta-RCNN | 19.9 | 25.5 | 35.0 | 45.7 | 51.5 | 10.4 | 19.4 | 29.6 | 34.8 | 45.4 | 14.3 | 18.2 | 27.5 | 41.2 | 48.1 | 31.1 |
FSCE | 44.2 | 43.8 | 51.4 | 61.9 | 63.4 | 27.3 | 29.5 | 43.5 | 44.2 | 50.2 | 37.2 | 41.9 | 47.5 | 54.6 | 58.5 | 46.6 |
E-FSOD | 48.1 | 53.0 | 54.1 | 61.2 | 64.1 | 28.5 | 32.7 | 44.2 | 44.6 | 51.6 | 41.1 | 50.1 | 50.3 | 57.5 | 59.1 | 49.3 |
TFA | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 | 39.9 |
D&R | 40.1 | 51.7 | 55.7 | 61.8 | 65.4 | 30.7 | 39.0 | 42.5 | 46.6 | 51.7 | 37.9 | 47.1 | 51.7 | 56.8 | 59.5 | 49.2 |
ACNet | 55.3 | — | 54.9 | 62.8 | 61.1 | 34.4 | — | 49.6 | 53.3 | 50.3 | 50.2 | — | 54.7 | 55.1 | 59.4 | — |
本文方法 | 46.7 | 46.7 | 54.2 | 64.6 | 65.4 | 30.4 | 32.8 | 46.0 | 48.1 | 53.1 | 41.2 | 44.6 | 50.7 | 57.4 | 59.8 | 49.4 |
方法 | mAP50 | ||||
---|---|---|---|---|---|
1-shot | 5-shot | 10-shot | 20-shot | 30-shot | |
Meta-RCNN | 16.2 | 31.8 | 43.5 | 60.6 | 64.8 |
FSCE | 28.5 | 46.4 | 61.3 | 67.6 | 72.0 |
E-FSOD | 30.1 | 47.4 | 60.1 | 68.0 | 71.4 |
TFA | 18.0 | 38.5 | 47.4 | 63.7 | 67.8 |
D&R | 29.9 | 45.0 | 63.7 | 69.1 | 74.1 |
ACNet | 33.6 | 49.9 | 61.8 | 68.7 | 70.5 |
本文方法 | 33.8 | 50.7 | 64.8 | 71.0 | 74.9 |
Tab. 2 Experimental results on insulator defect dataset
方法 | mAP50 | ||||
---|---|---|---|---|---|
1-shot | 5-shot | 10-shot | 20-shot | 30-shot | |
Meta-RCNN | 16.2 | 31.8 | 43.5 | 60.6 | 64.8 |
FSCE | 28.5 | 46.4 | 61.3 | 67.6 | 72.0 |
E-FSOD | 30.1 | 47.4 | 60.1 | 68.0 | 71.4 |
TFA | 18.0 | 38.5 | 47.4 | 63.7 | 67.8 |
D&R | 29.9 | 45.0 | 63.7 | 69.1 | 74.1 |
ACNet | 33.6 | 49.9 | 61.8 | 68.7 | 70.5 |
本文方法 | 33.8 | 50.7 | 64.8 | 71.0 | 74.9 |
缺陷 | mAP50 | ||||
---|---|---|---|---|---|
1-shot | 5-shot | 10-shot | 20-shot | 30-shot | |
陶瓷破损 | 30.3 | 48.0 | 56.0 | 60.1 | 64.7 |
玻璃自爆 | 37.3 | 53.4 | 73.6 | 81.9 | 85.1 |
Tab. 3 Experimental results of proposed method for detecting two insulator defects
缺陷 | mAP50 | ||||
---|---|---|---|---|---|
1-shot | 5-shot | 10-shot | 20-shot | 30-shot | |
陶瓷破损 | 30.3 | 48.0 | 56.0 | 60.1 | 64.7 |
玻璃自爆 | 37.3 | 53.4 | 73.6 | 81.9 | 85.1 |
EMA | HRPN | DC | mAP50 /% | 参数量/106 | 模型大小/MB | ||||
---|---|---|---|---|---|---|---|---|---|
1-shot | 5-shot | 10-shot | 20-shot | 30-shot | |||||
24.8 | 43.1 | 57.6 | 64.5 | 68.1 | 60.6 | 304.6 | |||
√ | 27.9 | 46.0 | 60.3 | 66.7 | 70.0 | 61.1 | 308.5 | ||
√ | √ | 30.2 | 47.6 | 61.6 | 68.4 | 72.0 | 61.2 | 308.7 | |
√ | √ | √ | 33.8 | 50.7 | 64.8 | 71.0 | 74.9 | 61.2 | 308.7 |
Tab. 4 Ablation experimental results on insulator defect dataset
EMA | HRPN | DC | mAP50 /% | 参数量/106 | 模型大小/MB | ||||
---|---|---|---|---|---|---|---|---|---|
1-shot | 5-shot | 10-shot | 20-shot | 30-shot | |||||
24.8 | 43.1 | 57.6 | 64.5 | 68.1 | 60.6 | 304.6 | |||
√ | 27.9 | 46.0 | 60.3 | 66.7 | 70.0 | 61.1 | 308.5 | ||
√ | √ | 30.2 | 47.6 | 61.6 | 68.4 | 72.0 | 61.2 | 308.7 | |
√ | √ | √ | 33.8 | 50.7 | 64.8 | 71.0 | 74.9 | 61.2 | 308.7 |
特征层 | 生成anchor数 | 负anchor数 | mAP50 /% | ||
---|---|---|---|---|---|
RPN | HRPN | RPN | HRPN | ||
P2 | 136 000 | 97 | 44 | 70.0 | 72.0 |
P3 | 34 000 | 67 | 45 | ||
P4 | 8 000 | 40 | 45 | ||
P5 | 2 025 | 15 | 45 | ||
P6 | 576 | 4 | 45 |
Tab. 5 Number of negative anchors sampled in FPN by different methods and performance of methods
特征层 | 生成anchor数 | 负anchor数 | mAP50 /% | ||
---|---|---|---|---|---|
RPN | HRPN | RPN | HRPN | ||
P2 | 136 000 | 97 | 44 | 70.0 | 72.0 |
P3 | 34 000 | 67 | 45 | ||
P4 | 8 000 | 40 | 45 | ||
P5 | 2 025 | 15 | 45 | ||
P6 | 576 | 4 | 45 |
模块 | mAP50 | ||
---|---|---|---|
陶瓷破损缺陷 | 玻璃自爆缺陷 | 平均值 | |
分类回归头 | 61.7 | 80.6 | 71.2 |
+FPN | 62.5 | 81.7 | 72.1 |
+HRPN | 63.9 | 83.6 | 73.8 |
+ROI feat extractor | 64.7 | 85.1 | 74.9 |
Tab. 6 Influence of fine-tuning strategies on model detection precision
模块 | mAP50 | ||
---|---|---|---|
陶瓷破损缺陷 | 玻璃自爆缺陷 | 平均值 | |
分类回归头 | 61.7 | 80.6 | 71.2 |
+FPN | 62.5 | 81.7 | 72.1 |
+HRPN | 63.9 | 83.6 | 73.8 |
+ROI feat extractor | 64.7 | 85.1 | 74.9 |
[1] | 刘传洋,吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43(19):7423-7446. |
LIU C Y, WU Y Q. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43(19):7423-7446. | |
[2] | 邬开俊,徐泽浩,单宏全. 基于FasterNet和YOLOv5改进的玻璃绝缘子自爆缺陷快速检测方法[J]. 高电压技术, 2024, 50(5):1865-1876. |
WU K J, XU Z H, SHAN H Q. Rapid detection method for self-exploding defects in glass insulators based on improved FasterNet and YOLOv5[J]. High Voltage Engineering, 2024, 50(5):1865-1876. | |
[3] | 王昱晴,袁田,聂霖,等. 玻璃绝缘子玻璃件缺陷的机器视觉检测方法[J]. 高电压技术, 2022, 48(12):4933-4940. |
WANG Y Q, YUAN T, NIE L, et al. Machine vision inspection method for defects of glass insulator[J]. High Voltage Engineering, 2022, 48(12):4933-4940. | |
[4] | 马耀名,张雨. 基于改进Faster-RCNN的绝缘子检测算法[J]. 计算机应用, 2022, 42(2):631-637. |
MA Y M, ZHANG Y. Insulator detection algorithm based on improved Faster-RCNN[J]. Journal of Computer Applications, 2022, 42(2):631-637. | |
[5] | 赵博,马宏忠,张潇,等. 定向识别航拍绝缘子及其缺陷检测方法研究[J]. 电子测量与仪器学报, 2023, 37(5):240-251. |
ZHAO B, MA H Z, ZHANG X, et al. Research on directional identification of aerial insulators and their defect detection methods[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(5):240-251. | |
[6] | 谢静,杜耀文,刘志坚,等. 基于轻量化改进型YOLOv5s的可见光绝缘子缺陷检测算法[J]. 电网技术, 2023, 47(12):5273-5282. |
XIE J, DU Y W, LIU Z J, et al. Defect detection algorithm based on lightweight and improved YOLOv5s for visible light insulators[J]. Power System Technology, 2023, 47(12):5273-5282. | |
[7] | 刘开培,李博强,秦亮,等. 深度学习目标检测算法在架空输电线路绝缘子缺陷检测中的应用研究综述[J]. 高电压技术, 2023, 49(9):3584-3595. |
LIU K P, LI B Q, QIN L, et al. Review of application research of deep learning object detection algorithms in insulator defect detection of overhead transmission lines[J]. High Voltage Engineering, 2023, 49(9):3584-3595. | |
[8] | 刘春磊,陈天恩,王聪,等. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1):53-73. |
LIU C L, CHEN T E, WANG C, et al. Survey of few-shot object detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1):53-73. | |
[9] | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928. |
[10] | SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7348-7358. |
[11] | LU Z, LI Y, SHUANG F, et al. InsDef: few-shot learning-based insulator defect detection algorithm with a dual-guide attention mechanism and multiple label consistency constraints[J]. IEEE Transactions on Power Delivery, 2023, 38(6): 4166-4178. |
[12] | SHI Y, WANG H, JING C, et al. A few-shot defect detection method for transmission lines based on meta-attention and feature reconstruction[J]. Applied Sciences, 2023, 13(10): No.5896. |
[13] | WU J, ZHOU Y. An improved few-shot object detection via feature reweighting method for insulator identification[J]. Applied Sciences, 2023, 13(10): No.6301. |
[14] | 白晓静,谢雅祺,赵淼,等. 基于局部特征深度信息的绝缘子小样本缺陷检测[J]. 电网技术, 2024, 48(2):740-752. |
BAI X J, XIE Y Q, ZHAO M, et al. Few-shot insulator defect detection based on deep information of local features[J]. Power System Technology, 2024, 48(2):740- 752. | |
[15] | OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
[16] | YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level low-shot learning[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585. |
[17] | LIU Y, WANG W, LI Q, et al. DCNet: a deformable convolutional cloud detection network for remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.8013305. |
[18] | ZHANG G, LUO Z, CUI K, et al. Meta-DETR: image-level few-shot detection with inter-class correlation exploitation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12832-12843. |
[19] | HAN G, MA J, HUANG S, et al. Few-shot object detection with fully cross-Transformer[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022:5311-5320. |
[20] | 史燕燕,史殿习,乔子腾,等. 小样本目标检测研究综述[J]. 计算机学报, 2023, 46(8):1753-1780. |
SHI Y Y, SHI D X, QIAO Z T, et al. A survey on recent advances in few-shot object detection[J]. Chinese Journal of Computers, 2023, 46(8): 1753-1780. | |
[21] | QIAO L, ZHAO Y, LI Z, et al. DeFRCN: decoupled Faster R-CNN for few-shot object detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8661-8670. |
[22] | YANG Z, ZHANG C, LI R, et al. Efficient few-shot object detection via knowledge inheritance[J]. IEEE Transactions on Image Processing, 2023, 32: 321-334. |
[23] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
[24] | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. |
[25] | LI J, ZHANG Y, QIANG W, et al. Disentangle and remerge: interventional knowledge distillation for few-shot object detection from a conditional causal perspective[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 1323-1333. |
[26] | HAO Z, LU J, LUO A. Few-shot object detection based on multi-scale attention model[C]// Proceedings of the SPIE 13161, 4th International Conference on Telecommunications, Optics, and Computer Science. Bellingham, WA: SPIE, 2024: No.131610L. |
[1] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
[2] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
[3] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
[4] | Fang WANG, Jing HU, Rui ZHANG, Wenting FAN. Medical image segmentation network with content-guided multi-angle feature fusion [J]. Journal of Computer Applications, 2025, 45(9): 3017-3025. |
[5] | Jiaxiang ZHANG, Xiaoming LI, Jiahui ZHANG. Few-shot object detection algorithm based on new category feature enhancement and metric mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2984-2992. |
[6] | Chuang WANG, Lu YU, Jianwei CHEN, Cheng PAN, Wenbo DU. Review of open set domain adaptation [J]. Journal of Computer Applications, 2025, 45(9): 2727-2736. |
[7] | Lili WEI, Lirong YAN, Xiaofen TANG. Contextual semantic representation and pixel relationship correction for few-shot object detection [J]. Journal of Computer Applications, 2025, 45(9): 2993-3002. |
[8] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
[9] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
[10] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
[11] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
[12] | Yuyang SUN, Minjie ZHANG, Jie HU. Zero-shot dialogue state tracking domain transfer model based on semantic prefix-tuning [J]. Journal of Computer Applications, 2025, 45(7): 2221-2228. |
[13] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[14] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
[15] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||