Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3510-3518.DOI: 10.11772/j.issn.1001-9081.2024121834

• The 7th CCF China Conference on Blockchain Technology • Previous Articles    

New federated learning scheme balancing efficiency and security

Jian YUN(), Xinru GAO, Tao LIU, Wenjie BI   

  1. Computer Science and Engineering College,Dalian Minzu University,Dalian Liaoning 116600,China
  • Received:2024-12-30 Revised:2025-01-17 Accepted:2025-01-24 Online:2025-02-14 Published:2025-11-10
  • Contact: Jian YUN
  • About author:GAO Xinru, born in 2001, M. S. candidate. Her research interests include federated learning.
    LIU Tao, born in 1999, M. S. candidate. His research interests include blockchain.
    BI Wenjie, born in 1998, M. S. candidate. His research interests include privacy security.
  • Supported by:
    Excellent Project of the China Association of Higher Education for National Universities(GJXHSZSZZY023)

兼顾高效性和安全性的新型联邦学习方案

云健(), 高新茹, 刘涛, 毕文洁   

  1. 大连民族大学 计算机科学与工程学院,辽宁 大连 116600
  • 通讯作者: 云健
  • 作者简介:高新茹(2001—),女,辽宁大连人,硕士研究生,主要研究方向:联邦学习
    刘涛(1999—),男,山东临沂人,硕士研究生,主要研究方向:区块链
    毕文洁(1998—),男,山东济南人,硕士研究生,主要研究方向:隐私安全。
  • 基金资助:
    中国高等教育学会全国高校数字思政精品项目(GJXHSZSZZY023)

Abstract:

To address the problem that implementing privacy-preserving mechanisms in federated learning exacerbates system communication burden, while attempting to improve communication efficiency often sacrifices model accuracy, a new federated learning scheme that balances both efficiency and security — FedPSR (Federated Parameter Sparsification with Secure aggregation and Reconstruction) was proposed. It aims to achieve a balance between model communication efficiency (comprising time complexity and communication overhead) and privacy security. Firstly, the parameter sparsification strategy of the Sparse Ternary Compression (STC) algorithm was used to compress the model parameters to be uploaded into triples, thereby reducing the amount of data transmission. Secondly, to compensate for the information loss caused by parameter compression, the error feedback mechanism accumulated the compression error of the previous round into the local gradient computed in the subsequent round. Finally, Paillier homomorphic encryption technology was applied to ensure the privacy security of parameter transmission and aggregation under the premise of efficient model communication. FedPSR was compared with current cutting-edge schemes on multiple public datasets under both Independent and Identically Distributed (IID) and Non-Independent and Identically Distributed (Non-IID) data scenarios. Experimental results show that FedPSR solves the existing problem of being unable to strike a balance between time complexity, communication overhead and privacy protection, and improves accuracy, convergence and robustness on three mainstream datasets under IID and Non-IID conditions.

Key words: federated learning, Sparse Ternary Compression (STC), communication efficiency, homomorphic encryption, privacy protection

摘要:

针对在联邦学习中实施隐私保护机制会加剧系统通信负担,而当试图提升系统通信效率时,又会牺牲模型精度的问题,设计了一种兼顾高效性和安全性的联邦学习方案FedPSR(Federated Parameter Sparsification with secure aggregation and Reconstruction)。该方案旨在平衡由时间复杂度与通信开销构成的模型通信效率和隐私安全性。首先,利用稀疏三元压缩(STC)算法的参数稀疏化策略将待上传的模型参数压缩为三元组形式,以减少数据传输量;其次,为弥补因参数压缩带来的信息损失,采用错误反馈机制将上一轮压缩产生的误差累加至下一轮本地更新后的梯度;最后,采用Paillier同态加密技术保证了模型在高效通信前提下的参数传输及聚合过程的隐私安全。在多个公开数据集上将FedPSR与当前前沿方案在独立同分布(IID)及非独立同分布(Non-IID)的数据场景下进行对比分析,实验结果表明,FedPSR解决了现存方案无法在时间复杂度、通信开销、隐私保护间取得平衡的问题,且在3个主流数据集的IID与Non-IID条件下都有效提高了模型的精度、收敛性及鲁棒性。

关键词: 联邦学习, 稀疏三元压缩, 通信效率, 同态加密, 隐私保护

CLC Number: