Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3658-3665.DOI: 10.11772/j.issn.1001-9081.2024111664
• Advanced computing • Previous Articles
Jiahao ZHANG, Qi WANG, Mingming LIU(
), Xiaofeng WANG, Biao HUANG, Pan LIU, Zhi YE
Received:2024-11-27
Revised:2025-01-07
Accepted:2025-01-24
Online:2025-02-14
Published:2025-11-10
Contact:
Mingming LIU
About author:ZHANG Jiahao, born in 1998, M. S. candidate. His research interests include machine learning, biometric identification.Supported by:
张家豪, 王琪, 刘明铭(
), 王晓峰, 黄彪, 刘盼, 叶至
通讯作者:
刘明铭
作者简介:张家豪(1998—),男,河南商丘人,硕士研究生,主要研究方向:机器学习、生物特征识别基金资助:CLC Number:
Jiahao ZHANG, Qi WANG, Mingming LIU, Xiaofeng WANG, Biao HUANG, Pan LIU, Zhi YE. Prediction of drug-target interactions based on sequence and multi-view networks[J]. Journal of Computer Applications, 2025, 45(11): 3658-3665.
张家豪, 王琪, 刘明铭, 王晓峰, 黄彪, 刘盼, 叶至. 基于序列和多视角网络的药物-靶标相互作用预测[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3658-3665.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111664
| 数据集 | 药物数 | 靶标数 | 药物-靶标 相互作用数 | 药物-药物 相互作用数 | 药物-药物结构 相似度矩阵 | 靶标-靶标相互 作用数 | 靶标-靶标序列 相似度矩阵 |
|---|---|---|---|---|---|---|---|
| Hetero-Seq-A | 708 | 1 512 | 1 923 | 10 036 | 708×708 | 7 363 | 1 512×1 512 |
| Hetero-Seq-B | 1 094 | 1 556 | 11 819 | 108 206 | 1 094×1 094 | 138 486 | 1 556×1 556 |
Tab. 1 Statistics of experimental datasets
| 数据集 | 药物数 | 靶标数 | 药物-靶标 相互作用数 | 药物-药物 相互作用数 | 药物-药物结构 相似度矩阵 | 靶标-靶标相互 作用数 | 靶标-靶标序列 相似度矩阵 |
|---|---|---|---|---|---|---|---|
| Hetero-Seq-A | 708 | 1 512 | 1 923 | 10 036 | 708×708 | 7 363 | 1 512×1 512 |
| Hetero-Seq-B | 1 094 | 1 556 | 11 819 | 108 206 | 1 094×1 094 | 138 486 | 1 556×1 556 |
| 方法 | 正负样本比例为1∶1 | 正负样本比例为1∶5 | 正负样本比例为1∶10 | |||
|---|---|---|---|---|---|---|
| AUC | AUPR | AUC | AUPR | AUC | AUPR | |
| DeepDTA | 0.903 9 | 0.932 6 | 0.816 7 | 0.925 0 | 0.754 5 | |
| DeepConv-DTI | 0.906 3 | 0.905 0 | 0.924 2 | 0.791 3 | 0.924 0 | 0.712 8 |
| GraphDTA | 0.906 0 | 0.882 9 | 0.920 4 | 0.801 8 | 0.914 6 | 0.753 1 |
| Co-VAE | 0.907 5 | 0.907 8 | 0.931 2 | 0.822 5 | 0.932 8 | 0.773 9 |
| HyperAttentionDTI | 0.899 0 | 0.899 0 | 0.923 8 | 0.786 9 | 0.929 0 | 0.728 5 |
| MFR-DTA | 0.904 7 | 0.901 2 | 0.923 0 | 0.819 3 | 0.915 7 | 0.745 8 |
| IMAEN | 0.899 9 | 0.898 4 | 0.926 0 | 0.805 6 | 0.927 5 | 0.752 3 |
| SMN-DTI(CNN/CNN) | 0.889 9 | 0.900 2 | 0.924 1 | 0.789 8 | 0.924 9 | 0.718 5 |
| SMN-DTI(CNN/VAE) | 0.905 9 | 0.926 7 | 0.826 5 | 0.933 1 | 0.785 1 | |
| SMN-DTI(VAE/CNN) | 0.903 7 | 0.916 7 | ||||
| SMN-DTI | 0.916 5 | 0.934 6 | 0.936 0 | 0.861 1 | 0.940 6 | 0.813 1 |
Tab. 2 Comparison of AUC and AUPR of various methods on Hetero-Seq-A dataset under different positive-and-negative sample ratios
| 方法 | 正负样本比例为1∶1 | 正负样本比例为1∶5 | 正负样本比例为1∶10 | |||
|---|---|---|---|---|---|---|
| AUC | AUPR | AUC | AUPR | AUC | AUPR | |
| DeepDTA | 0.903 9 | 0.932 6 | 0.816 7 | 0.925 0 | 0.754 5 | |
| DeepConv-DTI | 0.906 3 | 0.905 0 | 0.924 2 | 0.791 3 | 0.924 0 | 0.712 8 |
| GraphDTA | 0.906 0 | 0.882 9 | 0.920 4 | 0.801 8 | 0.914 6 | 0.753 1 |
| Co-VAE | 0.907 5 | 0.907 8 | 0.931 2 | 0.822 5 | 0.932 8 | 0.773 9 |
| HyperAttentionDTI | 0.899 0 | 0.899 0 | 0.923 8 | 0.786 9 | 0.929 0 | 0.728 5 |
| MFR-DTA | 0.904 7 | 0.901 2 | 0.923 0 | 0.819 3 | 0.915 7 | 0.745 8 |
| IMAEN | 0.899 9 | 0.898 4 | 0.926 0 | 0.805 6 | 0.927 5 | 0.752 3 |
| SMN-DTI(CNN/CNN) | 0.889 9 | 0.900 2 | 0.924 1 | 0.789 8 | 0.924 9 | 0.718 5 |
| SMN-DTI(CNN/VAE) | 0.905 9 | 0.926 7 | 0.826 5 | 0.933 1 | 0.785 1 | |
| SMN-DTI(VAE/CNN) | 0.903 7 | 0.916 7 | ||||
| SMN-DTI | 0.916 5 | 0.934 6 | 0.936 0 | 0.861 1 | 0.940 6 | 0.813 1 |
| 方法 | 正负样本比例为1∶1 | 正负样本比例为1∶5 | 正负样本比例为1∶10 | |||
|---|---|---|---|---|---|---|
| AUC | AUPR | AUC | AUPR | AUC | AUPR | |
| DeepDTA | 0.949 2 | 0.940 4 | 0.956 7 | 0.861 4 | 0.945 2 | 0.802 1 |
| DeepConv-DTI | 0.938 8 | 0.931 6 | 0.951 4 | 0.829 3 | 0.949 6 | 0.745 2 |
| GraphDTA | 0.930 1 | 0.914 0 | 0.940 5 | 0.832 6 | 0.933 4 | 0.764 6 |
| Co-VAE | 0.950 6 | 0.941 8 | 0.955 6 | 0.858 8 | 0.951 3 | 0.799 8 |
| HyperAttentionDTI | 0.952 9 | 0.949 6 | 0.956 2 | 0.887 7 | 0.949 9 | 0.802 5 |
| MFR-DTA | 0.949 8 | 0.937 2 | 0.954 3 | 0.864 9 | 0.947 2 | 0.801 7 |
| IMAEN | 0.951 1 | 0.948 0 | 0.958 0 | 0.874 5 | 0.948 7 | 0.796 9 |
| SMN-DTI(CNN/CNN) | 0.947 4 | 0.943 9 | 0.960 0 | 0.875 4 | 0.954 3 | 0.805 3 |
| SMN-DTI(CNN/VAE) | 0.953 5 | 0.962 8 | 0.887 2 | 0.826 2 | ||
| SMN-DTI(VAE/CNN) | 0.954 2 | 0.959 2 | ||||
| SMN-DTI | 0.962 4 | 0.963 6 | 0.966 9 | 0.901 9 | 0.963 1 | 0.844 3 |
Tab. 3 Comparison of AUC and AUPR of various methods on Hetero-Seq-B dataset under different positive-and-negative sample ratios
| 方法 | 正负样本比例为1∶1 | 正负样本比例为1∶5 | 正负样本比例为1∶10 | |||
|---|---|---|---|---|---|---|
| AUC | AUPR | AUC | AUPR | AUC | AUPR | |
| DeepDTA | 0.949 2 | 0.940 4 | 0.956 7 | 0.861 4 | 0.945 2 | 0.802 1 |
| DeepConv-DTI | 0.938 8 | 0.931 6 | 0.951 4 | 0.829 3 | 0.949 6 | 0.745 2 |
| GraphDTA | 0.930 1 | 0.914 0 | 0.940 5 | 0.832 6 | 0.933 4 | 0.764 6 |
| Co-VAE | 0.950 6 | 0.941 8 | 0.955 6 | 0.858 8 | 0.951 3 | 0.799 8 |
| HyperAttentionDTI | 0.952 9 | 0.949 6 | 0.956 2 | 0.887 7 | 0.949 9 | 0.802 5 |
| MFR-DTA | 0.949 8 | 0.937 2 | 0.954 3 | 0.864 9 | 0.947 2 | 0.801 7 |
| IMAEN | 0.951 1 | 0.948 0 | 0.958 0 | 0.874 5 | 0.948 7 | 0.796 9 |
| SMN-DTI(CNN/CNN) | 0.947 4 | 0.943 9 | 0.960 0 | 0.875 4 | 0.954 3 | 0.805 3 |
| SMN-DTI(CNN/VAE) | 0.953 5 | 0.962 8 | 0.887 2 | 0.826 2 | ||
| SMN-DTI(VAE/CNN) | 0.954 2 | 0.959 2 | ||||
| SMN-DTI | 0.962 4 | 0.963 6 | 0.966 9 | 0.901 9 | 0.963 1 | 0.844 3 |
| 药物元路径 | 靶标元路径 | AUC | AUPR |
|---|---|---|---|
| 0.953 0 | 0.953 2 | ||
| 0.927 7 | 0.919 3 | ||
| 0.958 8 | 0.960 7 | ||
| 0.962 4 | 0.963 6 |
Tab. 4 Experimental results of different meta-paths
| 药物元路径 | 靶标元路径 | AUC | AUPR |
|---|---|---|---|
| 0.953 0 | 0.953 2 | ||
| 0.927 7 | 0.919 3 | ||
| 0.958 8 | 0.960 7 | ||
| 0.962 4 | 0.963 6 |
| [1] | KAPETANOVIC I M. Computer-Aided Drug Discovery and Development (CADDD): in silico-chemico-biological approach[J]. Chemico-Biological Interactions, 2008, 171(2): 165-176. |
| [2] | HE Z, ZHANG J, SHI X H, et al. Predicting drug-target interaction networks based on functional groups and biological features[J]. PLoS ONE, 2010, 5(3): No.e9603. |
| [3] | COBANOGLU M C, LIU C, HU F Z, et al. Predicting drug-target interactions using probabilistic matrix factorization[J]. Journal of Chemical Information and Modeling, 2013, 53(12): 3399-3409. |
| [4] | ÖZTÜRK H, ÖZGÜR A, OZKIRIMLI E. DeepDTA: deep drug-target binding affinity prediction[J]. Bioinformatics, 2018, 34(17): i821-i829. |
| [5] | TSUBAKI M, TOMII K, SESE J. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences[J]. Bioinformatics, 2019, 35(2): 309-318. |
| [6] | ZHAO Q, XIAO F, YANG M, et al. AttentionDTA: prediction of drug-target binding affinity using attention model[C]// Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2019: 64-69. |
| [7] | NGUYEN T, LE H, QUINN T P, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140-1147. |
| [8] | LI T, ZHAO X M, LI L. Co-VAE: drug-target binding affinity prediction by co-regularized variational autoencoders[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8861-8873. |
| [9] | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2023-11-01].. |
| [10] | ZHANG P, WEI Z, CHE C, et al. DeepMGT-DTI: transformer network incorporating multilayer graph information for Drug-Target interaction prediction[J]. Computers in Biology and Medicine, 2022, 142: No.105214. |
| [11] | WANG X, JI H, SHI C, et al. Heterogeneous graph attention network[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032. |
| [12] | LI J, WANG J R, LV H, et al. IMCHGAN: inductive matrix completion with heterogeneous graph attention networks for drug-target interactions prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(2): 655-665. |
| [13] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-07-01].. |
| [14] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
| [15] | ZHAO Q, ZHAO H, ZHENG K, et al. HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism[J]. Bioinformatics, 2022, 38(3): 655-662. |
| [16] | ZHANG Y, HU Y, LI H, et al. Drug-protein interaction prediction via variational autoencoders and attention mechanisms[J]. Frontiers in Genetics, 2022, 13: No.1032779. |
| [17] | HIGGINS I, MATTHEY L, PAL A, et al. β-VAE: learning basic visual concepts with a constrained variational framework[EB/OL]. [2023-11-01].. |
| [18] | DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 933-941. |
| [19] | LUO Y, ZHAO X, ZHOU J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nature Communications, 2017, 8: No.573. |
| [20] | SUN Y, HAN J, YAN X, et al. PathSim: meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003. |
| [21] | LI M, CAI X, XU S, et al. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction[J]. Briefings in Bioinformatics, 2023, 24(1): No.bbac578. |
| [22] | MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[EB/OL]. [2023-12-03].. |
| [23] | CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by Exponential Linear Units (ELUs)[EB/OL]. [2023-12-03].. |
| [24] | SHAO K H, ZHANG Y, WEN Y, et al. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph[J]. Briefings in Bioinformatics, 2022, 23(3): No.bbac109. |
| [25] | ZHENG Y, PENG H, ZHANG X, et al. Predicting drug targets from heterogeneous spaces using anchor graph hashing and ensemble learning[C]// Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway: IEEE, 2018: 1-7. |
| [26] | LEE I, KEUM J, NAM H. DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences[J]. PLoS Computational Biology, 2019, 15(6): No.e1007129. |
| [27] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-12-03].. |
| [28] | HUA Y, SONG X, FENG Z, et al. MFR-DTA: a multi-functional and robust model for predicting drug-target binding affinity and region[J]. Bioinformatics, 2023, 39(2): No.btad056. |
| [29] | ZHANG J, LIU Z, PAN Y, et al. IMAEN: an interpretable molecular augmentation model for drug-target interaction prediction[J]. Expert Systems with Applications, 2024, 238(Pt C): No.121882. |
| [30] | PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 8026-8037. |
| [31] | WANG M, ZHENG D, YE Z, et al. Deep graph library: a graph-centric, highly-performant package for graph neural networks[EB/OL]. [2023-11-15].. |
| [1] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [2] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [3] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [4] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [5] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [6] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [7] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [8] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
| [9] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
| [10] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
| [11] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
| [12] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
| [13] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
| [14] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. |
| [15] | Weigang LI, Xinyi LI, Yongqiang WANG, Yuntao ZHAO. Point cloud classification and segmentation method based on adaptive dynamic graph convolution and parameter-free attention [J]. Journal of Computer Applications, 2025, 45(6): 1980-1986. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||