Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1980-1986.DOI: 10.11772/j.issn.1001-9081.2024060878
• Multimedia computing and computer simulation • Previous Articles
Weigang LI1,2, Xinyi LI1(), Yongqiang WANG1, Yuntao ZHAO1
Received:
2024-06-27
Revised:
2024-08-30
Accepted:
2024-09-06
Online:
2024-10-29
Published:
2025-06-10
Contact:
Xinyi LI
About author:
LI Weigang, born in 1977, Ph. D., professor. His research interests include industrial process control, artificial intelligence, machine learning algorithms.Supported by:
通讯作者:
李歆怡
作者简介:
李维刚(1977—),男,湖北咸宁人,教授,博士,主要研究方向:工业过程控制、人工智能、机器学习算法基金资助:
CLC Number:
Weigang LI, Xinyi LI, Yongqiang WANG, Yuntao ZHAO. Point cloud classification and segmentation method based on adaptive dynamic graph convolution and parameter-free attention[J]. Journal of Computer Applications, 2025, 45(6): 1980-1986.
李维刚, 李歆怡, 王永强, 赵云涛. 基于自适应动态图卷积和无参注意力的点云分类分割方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1980-1986.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060878
方法 | 输入 | mAcc | OA |
---|---|---|---|
MVCNN | View | — | 90.1 |
3D ShapeNets | Voxels | 77.5 | 84.5 |
PointNet | xyz | 86.2 | 89.2 |
PointNet++ | xyz+normal | — | 91.9 |
PointCNN | xyz | — | 92.2 |
DGCNN | xyz | 89.8 | 92.6 |
3D-GCN | xyz | — | 92.1 |
PointASNL | xyz+normal | — | 93.2 |
PCT | xyz | — | 93.2 |
APES(local-based) | xyz | — | 93.5 |
APES(global-based) | xyz | — | 93.8 |
DHGCN | xyz | — | 93.0 |
本文方法 | xyz | 91.2 | 93.8 |
Tab. 1 Classification results on ModelNet40 dataset
方法 | 输入 | mAcc | OA |
---|---|---|---|
MVCNN | View | — | 90.1 |
3D ShapeNets | Voxels | 77.5 | 84.5 |
PointNet | xyz | 86.2 | 89.2 |
PointNet++ | xyz+normal | — | 91.9 |
PointCNN | xyz | — | 92.2 |
DGCNN | xyz | 89.8 | 92.6 |
3D-GCN | xyz | — | 92.1 |
PointASNL | xyz+normal | — | 93.2 |
PCT | xyz | — | 93.2 |
APES(local-based) | xyz | — | 93.5 |
APES(global-based) | xyz | — | 93.8 |
DHGCN | xyz | — | 93.0 |
本文方法 | xyz | 91.2 | 93.8 |
方法 | mean | mIoU/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
飞机 | 包 | 帽子 | 汽车 | 椅子 | 耳机 | 吉他 | 刀 | 灯 | 电脑 | 摩托 | 水杯 | 手枪 | 火箭 | 滑板 | 桌子 | ||
PointNet | 83.7 | 83.4 | 78.7 | 82.5 | 74.9 | 89.6 | 73.0 | 91.5 | 85.9 | 80.8 | 95.3 | 65.2 | 93.0 | 81.2 | 57.9 | 72.8 | 80.6 |
PointNet++ | 85.1 | 82.4 | 79.0 | 87.7 | 77.3 | 90.8 | 71.8 | 91.0 | 85.9 | 83.7 | 95.3 | 71.6 | 94.1 | 91.3 | 58.7 | 76.4 | 82.6 |
DGCNN | 85.2 | 84.0 | 83.4 | 86.7 | 77.8 | 90.6 | 73.5 | 90.7 | 83.9 | 82.8 | 95.7 | 66.3 | 94.9 | 81.1 | 63.5 | 74.5 | 82.6 |
LDAGCC | 85.1 | 84.0 | 83.0 | 84.9 | 78.4 | 90.6 | 74.4 | 91.0 | 88.1 | 83.4 | 95.8 | 67.4 | 94.9 | 82.3 | 59.2 | 76.0 | 81.9 |
3D-GCN | 85.1 | 83.1 | 84.0 | 86.6 | 77.5 | 90.3 | 74.1 | 90.9 | 86.4 | 83.8 | 95.6 | 66.8 | 94.8 | 81.3 | 59.6 | 75.7 | 82.8 |
SDANet | 85.3 | — | 82.9 | 84.8 | 79.0 | 90.7 | 68.6 | 91.0 | 87.1 | 82.8 | 95.6 | 73.0 | 95.6 | 82.5 | 61.2 | 76.2 | 83.1 |
本文方法 | 86.0 | 84.4 | 81.5 | 85.0 | 80.0 | 91.2 | 77.4 | 91.7 | 88.1 | 85.1 | 96.1 | 73.4 | 95.0 | 83.3 | 60.1 | 76.9 | 82.7 |
Tab. 2 Part segmentation results on ShapeNetPart dataset
方法 | mean | mIoU/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
飞机 | 包 | 帽子 | 汽车 | 椅子 | 耳机 | 吉他 | 刀 | 灯 | 电脑 | 摩托 | 水杯 | 手枪 | 火箭 | 滑板 | 桌子 | ||
PointNet | 83.7 | 83.4 | 78.7 | 82.5 | 74.9 | 89.6 | 73.0 | 91.5 | 85.9 | 80.8 | 95.3 | 65.2 | 93.0 | 81.2 | 57.9 | 72.8 | 80.6 |
PointNet++ | 85.1 | 82.4 | 79.0 | 87.7 | 77.3 | 90.8 | 71.8 | 91.0 | 85.9 | 83.7 | 95.3 | 71.6 | 94.1 | 91.3 | 58.7 | 76.4 | 82.6 |
DGCNN | 85.2 | 84.0 | 83.4 | 86.7 | 77.8 | 90.6 | 73.5 | 90.7 | 83.9 | 82.8 | 95.7 | 66.3 | 94.9 | 81.1 | 63.5 | 74.5 | 82.6 |
LDAGCC | 85.1 | 84.0 | 83.0 | 84.9 | 78.4 | 90.6 | 74.4 | 91.0 | 88.1 | 83.4 | 95.8 | 67.4 | 94.9 | 82.3 | 59.2 | 76.0 | 81.9 |
3D-GCN | 85.1 | 83.1 | 84.0 | 86.6 | 77.5 | 90.3 | 74.1 | 90.9 | 86.4 | 83.8 | 95.6 | 66.8 | 94.8 | 81.3 | 59.6 | 75.7 | 82.8 |
SDANet | 85.3 | — | 82.9 | 84.8 | 79.0 | 90.7 | 68.6 | 91.0 | 87.1 | 82.8 | 95.6 | 73.0 | 95.6 | 82.5 | 61.2 | 76.2 | 83.1 |
本文方法 | 86.0 | 84.4 | 81.5 | 85.0 | 80.0 | 91.2 | 77.4 | 91.7 | 88.1 | 85.1 | 96.1 | 73.4 | 95.0 | 83.3 | 60.1 | 76.9 | 82.7 |
方法 | OA | mAcc | mIoU |
---|---|---|---|
PointNet | — | 49.0 | 41.1 |
3D-GCN | — | — | 53.4 |
PointCNN | 85.9 | 63.9 | 57.3 |
GACNet | 87.8 | — | 62.9 |
PointASNL | 87.7 | 68.5 | 62.6 |
SDANet | — | — | 59.6 |
本文方法 | 89.3 | 71.1 | 65.7 |
Tab. 3 Semantic segmentation results on S3DIS dataset
方法 | OA | mAcc | mIoU |
---|---|---|---|
PointNet | — | 49.0 | 41.1 |
3D-GCN | — | — | 53.4 |
PointCNN | 85.9 | 63.9 | 57.3 |
GACNet | 87.8 | — | 62.9 |
PointASNL | 87.7 | 68.5 | 62.6 |
SDANet | — | — | 59.6 |
本文方法 | 89.3 | 71.1 | 65.7 |
分组 | EdgeConv | ADGC | PFA | mAcc | OA |
---|---|---|---|---|---|
A | √ | × | × | 90.0 | 92.7 |
B | √ | × | √ | 90.4 | 93.4 |
C | √ | √ | × | 90.3 | 93.2 |
D | √ | √ | √ | 91.2 | 93.8 |
Tab. 4 Ablation experimental results for classification on ModelNet40 dataset
分组 | EdgeConv | ADGC | PFA | mAcc | OA |
---|---|---|---|---|---|
A | √ | × | × | 90.0 | 92.7 |
B | √ | × | √ | 90.4 | 93.4 |
C | √ | √ | × | 90.3 | 93.2 |
D | √ | √ | √ | 91.2 | 93.8 |
分组 | EdgeConv | ADGC | PFA | mcIoU | mIoU |
---|---|---|---|---|---|
A | √ | × | × | 82.3 | 85.2 |
B | √ | × | √ | 82.5 | 85.6 |
C | √ | √ | × | 82.7 | 85.8 |
D | √ | √ | √ | 83.2 | 86.0 |
Tab. 5 Ablation experimental results for segmentation on ShapeNetPart dataset
分组 | EdgeConv | ADGC | PFA | mcIoU | mIoU |
---|---|---|---|---|---|
A | √ | × | × | 82.3 | 85.2 |
B | √ | × | √ | 82.5 | 85.6 |
C | √ | √ | × | 82.7 | 85.8 |
D | √ | √ | √ | 83.2 | 86.0 |
K | mAcc/% | OA/% | K | mAcc/% | OA/% |
---|---|---|---|---|---|
5 | 88.9 | 92.7 | 25 | 89.8 | 93.4 |
10 | 89.7 | 92.9 | 30 | 90.6 | 93.3 |
15 | 91.0 | 93.3 | 35 | 90.0 | 93.1 |
20 | 91.2 | 93.8 | 40 | 89.9 | 93.0 |
Tab. 6 Accuracy with different K
K | mAcc/% | OA/% | K | mAcc/% | OA/% |
---|---|---|---|---|---|
5 | 88.9 | 92.7 | 25 | 89.8 | 93.4 |
10 | 89.7 | 92.9 | 30 | 90.6 | 93.3 |
15 | 91.0 | 93.3 | 35 | 90.0 | 93.1 |
20 | 91.2 | 93.8 | 40 | 89.9 | 93.0 |
1 | FENG W, LI J, CAI H, et al. Neural points: point cloud representation with neural fields for arbitrary upsampling[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18612-18621. |
2 | JIANG L, ZHANG J, DENG B. Robust RGB-D face recognition using attribute-aware loss[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2552-2566. |
3 | LI Y, IBANEZ-GUZMAN J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 2020, 37(4): 50-61. |
4 | XIONG J, HSIANG E L, HE Z, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light: Science and Applications, 2021, 10: No.216. |
5 | WANG J, CHEN J, SUN Y, et al. RobOT: robustness-oriented testing for deep learning systems[C]// Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering. Piscataway: IEEE, 2021: 300-311. |
6 | MIRZAEI K, ARASHPOUR M, ASADI E, et al. 3D point cloud data processing with machine learning for construction and infrastructure applications: a comprehensive review[J]. Advanced Engineering Informatics, 2022, 51: No.101501. |
7 | WU Z, SONG S, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920. |
8 | SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 945-953. |
9 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. |
10 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5105-5114. |
11 | WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): No.146. |
12 | ZHANG K, HAO M, WANG J, et al. Linked dynamic graph CNN: Learning on point cloud via linking hierarchical features[C]// Proceedings of the 27th International Conference on Mechatronics and Machine Vision in Practice. Piscataway: IEEE, 2021: 7-12. |
13 | WANG L, HUANG Y, HOU Y, et al. Graph attention convolution for point cloud semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10288-10297. |
14 | LIN Z H, HUANG S Y, WANG Y C F. Learning of 3D graph convolution networks for point cloud analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4212-4224. |
15 | 李维刚,陈婷,田志强. 基于孪生自适应图卷积算法的点云分类与分割[J]. 计算机应用, 2023, 43(11): 3396-3402. |
LI W G, CHEN T, TIAN Z Q. Point cloud classification and segmentation based on Siamese adaptive graph convolution algorithm [J]. Journal of Computer Applications, 2023, 43(11): 3396-3402. | |
16 | 刘斌,樊云超. 基于改进动态图卷积的点云分类模型[J]. 中国科技论文, 2022, 17(11): 1230-1235, 1266. |
LIU B, FAN Y C. A point cloud classification model based on improved dynamic graph convolution [J]. China Sciencepaper, 2022, 17(11): 1230-1235, 1266. | |
17 | 任欢,王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6. |
REN H, WANG X G. Review of attention mechanism[J]. Journal of Computer Applications, 2021, 41(S1): 1-6. | |
18 | YAN X, ZHENG C, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5588-5597. |
19 | GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud Transformer[J]. Computational Visual Media, 2021, 7(2): 187-199. |
20 | LU D, GAO K, XIE Q, et al. 3DPCT: 3D point cloud transformer with dual self-attention [EB/OL]. [2024-08-25].. |
21 | GAO J, LAN J, WANG B, et al. SDANet: spatial deep attention-based for point cloud classification and segmentation [J]. Machine Learning, 2022, 111(4): 1327-1348. |
22 | WU C, ZHENG J, PFROMMER J, et al. Attention-based point cloud edge sampling[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5333-5343. |
23 | JIANG J, ZHAO L, LU X, et al. DHGCN: dynamic hop graph convolution network for self-supervised point cloud learning [C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 12883-12891. |
24 | MA X, QIN C, YOU H, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[EB/OL]. [2024-08-25].. |
25 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
26 | YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 11863-11874. |
27 | LI Y, BU R, SUN M, et al. PointCNN: convolution on X -transformed points[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 828-838. |
28 | YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transaction on Graphics, 2016, 35(6): No.210. |
29 | ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1534-1543. |
[1] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
[2] | Daoquan LI, Zheng XU, Sihui CHEN, Jiayu LIU. Network traffic classification model integrating variational autoencoder and AdaBoost-CNN [J]. Journal of Computer Applications, 2025, 45(6): 1841-1848. |
[3] | Shuangshuang CUI, Hongzhi WANG, Jiahao ZHU, Hao WU. Two-stage data selection method for classifier with low energy consumption and high performance [J]. Journal of Computer Applications, 2025, 45(6): 1703-1711. |
[4] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
[5] | Jianhua WANG, Chuanyu WU, Liping XU. Enhanced evolutionary algorithm for multi-factor flexible job shop green scheduling [J]. Journal of Computer Applications, 2025, 45(6): 1954-1962. |
[6] | Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction [J]. Journal of Computer Applications, 2025, 45(5): 1472-1479. |
[7] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[8] | Kai CHEN, Hailiang YE, Feilong CAO. Classification algorithm for point cloud based on local-global interaction and structural Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1671-1676. |
[9] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
[10] | Jie HU, Shuaixing WU, Zhilan CAO, Yan ZHANG. Named entity recognition model based on global information fusion and multi-dimensional relation perception [J]. Journal of Computer Applications, 2025, 45(5): 1511-1519. |
[11] | Zihe CHEN, Bin CHEN. Unsupervised point cloud anomaly detection based on multi-representation fusion [J]. Journal of Computer Applications, 2025, 45(5): 1677-1685. |
[12] | Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning [J]. Journal of Computer Applications, 2025, 45(5): 1613-1618. |
[13] | Lu CHEN, Huaiyao WANG, Jingyang LIU, Tao YAN, Bin CHEN. Robotic grasp detection with feature fusion of spatial-Fourier domain information under low-light environments [J]. Journal of Computer Applications, 2025, 45(5): 1686-1693. |
[14] | Jie HU, Qiyang ZHENG, Jun SUN, Yan ZHANG. Multi-label classification model based on multi-label relational graph and local dynamic reconstruction learning [J]. Journal of Computer Applications, 2025, 45(4): 1104-1112. |
[15] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||