Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3721-3729.DOI: 10.11772/j.issn.1001-9081.2024111594

• Multimedia computing and computer simulation • Previous Articles    

Unsupervised industrial anomaly detection based on denoising reverse distillation

Yuxuan LI1,2, Bin CHEN2,3,4(), Weizhi XIAN4   

  1. 1.Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu Sichuan 610213,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.International Institute for Artificial Intelligence,Harbin Institute of Technology (Shenzhen),Shenzhen Guangdong 518055,China
    4.Chongqing Research Institute,Harbin Institute of Technology,Chongqing 401151,China
  • Received:2024-11-11 Revised:2025-03-20 Accepted:2025-03-26 Online:2025-04-02 Published:2025-11-10
  • Contact: Bin CHEN
  • About author:LI Yuxuan, born in 1999, M. S. candidate. His research interests include anomaly detection, deep learning.
    XIAN Weizhi, born in 1994, Ph. D. His research interests include computer vision, pattern recognition.
  • Supported by:
    General Project of Natural Science Foundation of Chongqing(CSTB2024NSCQ-MSX0479);General Project of China Postdoctoral Science Foundation(2024MD754244);Special Funding Program for Postdoctoral Research in Chongqing(2023CQBSHTB3119)

基于去噪反向蒸馏的无监督工业异常检测

李雨轩1,2, 陈斌2,3,4(), 咸伟志4   

  1. 1.中国科学院 成都计算机应用研究所,成都 610213
    2.中国科学院大学,北京 100049
    3.哈尔滨工业大学(深圳) 国际人工智能研究院,广东 深圳 518055
    4.哈尔滨工业大学 重庆研究院,重庆 401151
  • 通讯作者: 陈斌
  • 作者简介:李雨轩(1999—),男,河南商丘人,硕士研究生,主要研究方向:异常检测、深度学习
    咸伟志(1994—),男,江苏南京人,博士,主要研究方向:计算机视觉、模式识别。
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2024NSCQ-MSX0479);中国博士后科学基金面上项目(2024MD754244);重庆市博士后研究特别资助项目(2023CQBSHTB3119)

Abstract:

Anomaly detection with localization capabilities is an important application of computer vision in industrial manufacturing. Recently, anomaly detection algorithms based on Reverse Distillation (RD) demonstrate good performance for this task. However, previous RD-based approaches only apply constraints to normal data, failing to ensure student network's feature reconstruction capability when dealing with anomalies. In addition, RD-based anomaly detection algorithms fuse multi-level difference information of the network based on experience solely, leading to suboptimal anomaly localization. To further enhance performance, an unsupervised industrial anomaly detection algorithm based on denoising RD, called DeRD, was proposed. It consists of an RD network with memory bank, an Multi-Scale Feature Denoising (MSFD) module, and a segmentation network. Firstly, to strengthen constraints on anomalous data, a MSFD module based on contrastive learning and multi-task learning was designed. Combined with a memory bank mechanism, this model enabled the student network to learn more discriminative feature representations. Secondly, a self-supervised segmentation network using synthetic anomalies was trained to adaptively integrate the feature difference information between multi-level teacher and student networks, thereby significantly improving anomaly localization performance. Experimental results on industrial detection benchmark datasets demonstrate the advanced performance of DeRD. It achieves an image-level AUC (Area Under the receiver operating characteristic Curve) of 98.8%, a pixel-level AUC of 98.48%, and a pixel-level Average Precision (AP) of 73.5%, surpassing comparison algorithms.

Key words: anomaly detection, Reverse Distillation (RD), teacher-student network, contrastive learning, unsupervised learning

摘要:

具有定位功能的异常检测是计算机视觉在工业制造中的一项重要应用。近年来,基于反向蒸馏(RD)的异常检测算法在这一任务中表现出良好的性能。但先前基于RD的工作由于仅对正常数据进行约束,难以保证学生网络面对异常时的特征重建能力。此外,基于RD的异常检测算法仅凭经验融合网络的多级差异信息,无法达到最优的异常定位效果。为进一步提升性能,提出一种基于去噪反向蒸馏的无监督工业异常检测算法DeRD,由带有记忆库的RD网络、多尺度特征去噪(MSFD)模块和分割网络组成。首先,为了加强对异常数据的约束,设计一种基于对比学习与多任务学习的MSFD模块,并结合记忆库机制,使学生网络能够学习更有效的特征表示;其次,为了自适应地融合多级教师网络与学生网络的特征差异信息,训练一个使用合成异常的自监督分割网络,从而显著提高模型异常定位性能。在工业检测基准数据集上的实验结果表明,DeRD算法表现出先进的性能,它的图像级受试者工作特征曲线下面积(AUC)为98.8%,像素级AUC为98.4%,像素级平均精确率(AP)为73.5%,高于对比算法。

关键词: 异常检测, 反向蒸馏, 教师学生网络, 对比学习, 无监督学习

CLC Number: