Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3721-3729.DOI: 10.11772/j.issn.1001-9081.2024111594
• Multimedia computing and computer simulation • Previous Articles
Yuxuan LI1,2, Bin CHEN2,3,4(
), Weizhi XIAN4
Received:2024-11-11
Revised:2025-03-20
Accepted:2025-03-26
Online:2025-04-02
Published:2025-11-10
Contact:
Bin CHEN
About author:LI Yuxuan, born in 1999, M. S. candidate. His research interests include anomaly detection, deep learning.Supported by:通讯作者:
陈斌
作者简介:李雨轩(1999—),男,河南商丘人,硕士研究生,主要研究方向:异常检测、深度学习基金资助:CLC Number:
Yuxuan LI, Bin CHEN, Weizhi XIAN. Unsupervised industrial anomaly detection based on denoising reverse distillation[J]. Journal of Computer Applications, 2025, 45(11): 3721-3729.
李雨轩, 陈斌, 咸伟志. 基于去噪反向蒸馏的无监督工业异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3721-3729.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111594
| 类别 | PatchCore[ | PaDiM[ | DRÆM[ | STPM[ | RD4AD[ | DestSeg[ | DeRD |
|---|---|---|---|---|---|---|---|
| 平均 | 97.5 | 90.8 | 95.4 | 92.4 | 98.6 | 98.2 | 98.8 |
| bottle | 100.0 | 99.4 | 96.2 | 100.0 | 99.9 | 100.0 | 100.0 |
| cable | 98.5 | 85.0 | 81.1 | 74.8 | 97.0 | 98.0 | 97.7 |
| capsule | 95.4 | 94.9 | 93.9 | 94.4 | 98.2 | 95.7 | 97.4 |
| carpet | 99.7 | 88.9 | 89.4 | 92.5 | 98.7 | 99.8 | 99.1 |
| grid | 94.7 | 90.4 | 99.6 | 77.4 | 100.0 | 100.0 | 100.0 |
| hazelnut | 99.4 | 99.1 | 99.4 | 95.6 | 100.0 | 99.9 | 99.7 |
| leather | 100.0 | 84.3 | 100.0 | 95.3 | 100.0 | 100.0 | 100.0 |
| metal nut | 100.0 | 87.6 | 95.0 | 94.0 | 100.0 | 99.2 | 99.5 |
| pill | 95.1 | 98.1 | 90.2 | 93.0 | 96.8 | 95.7 | 92.2 |
| screw | 96.4 | 92.2 | 96.8 | 97.6 | 97.8 | 90.0 | 98.2 |
| tile | 98.2 | 86.5 | 99.8 | 99.0 | 99.3 | 99.8 | 99.8 |
| toothbrush | 100.0 | 100.0 | 99.1 | 100.0 | 99.7 | 99.1 | 100.0 |
| transistor | 90.5 | 94.1 | 91.9 | 97.2 | 96.8 | 99.2 | 100.0 |
| wood | 96.3 | 80.8 | 98.2 | 96.3 | 99.2 | 97.1 | 99.4 |
| zipper | 98.6 | 80.9 | 100.0 | 78.5 | 98.0 | 100.0 | 99.6 |
Tab. 1 Image-level AUC of different methods on MVTec AD dataset
| 类别 | PatchCore[ | PaDiM[ | DRÆM[ | STPM[ | RD4AD[ | DestSeg[ | DeRD |
|---|---|---|---|---|---|---|---|
| 平均 | 97.5 | 90.8 | 95.4 | 92.4 | 98.6 | 98.2 | 98.8 |
| bottle | 100.0 | 99.4 | 96.2 | 100.0 | 99.9 | 100.0 | 100.0 |
| cable | 98.5 | 85.0 | 81.1 | 74.8 | 97.0 | 98.0 | 97.7 |
| capsule | 95.4 | 94.9 | 93.9 | 94.4 | 98.2 | 95.7 | 97.4 |
| carpet | 99.7 | 88.9 | 89.4 | 92.5 | 98.7 | 99.8 | 99.1 |
| grid | 94.7 | 90.4 | 99.6 | 77.4 | 100.0 | 100.0 | 100.0 |
| hazelnut | 99.4 | 99.1 | 99.4 | 95.6 | 100.0 | 99.9 | 99.7 |
| leather | 100.0 | 84.3 | 100.0 | 95.3 | 100.0 | 100.0 | 100.0 |
| metal nut | 100.0 | 87.6 | 95.0 | 94.0 | 100.0 | 99.2 | 99.5 |
| pill | 95.1 | 98.1 | 90.2 | 93.0 | 96.8 | 95.7 | 92.2 |
| screw | 96.4 | 92.2 | 96.8 | 97.6 | 97.8 | 90.0 | 98.2 |
| tile | 98.2 | 86.5 | 99.8 | 99.0 | 99.3 | 99.8 | 99.8 |
| toothbrush | 100.0 | 100.0 | 99.1 | 100.0 | 99.7 | 99.1 | 100.0 |
| transistor | 90.5 | 94.1 | 91.9 | 97.2 | 96.8 | 99.2 | 100.0 |
| wood | 96.3 | 80.8 | 98.2 | 96.3 | 99.2 | 97.1 | 99.4 |
| zipper | 98.6 | 80.9 | 100.0 | 78.5 | 98.0 | 100.0 | 99.6 |
| 类别 | PatchCore[ | PaDiM[ | DRÆM[ | STPM[ | RD4AD[ | DestSeg[ | DeRD |
|---|---|---|---|---|---|---|---|
| 平均 | 96.4 | 96.6 | 97.5 | 95.4 | 97.8 | 98.0 | 98.4 |
| bottle | 98.8 | 98.4 | 99.3 | 98.3 | 98.8 | 99.2 | 98.6 |
| cable | 94.6 | 95.4 | 95.4 | 88.4 | 97.0 | 96.3 | 97.8 |
| capsule | 92.1 | 90.6 | 94.0 | 96.9 | 98.6 | 98.0 | 98.2 |
| carpet | 99.0 | 98.9 | 96.2 | 98.8 | 98.9 | 97.5 | 99.2 |
| grid | 96.5 | 96.5 | 99.6 | 76.5 | 99.3 | 99.2 | 98.4 |
| hazelnut | 93.8 | 93.0 | 99.5 | 87.8 | 99.0 | 99.3 | 99.5 |
| leather | 98.0 | 98.1 | 98.9 | 98.6 | 99.4 | 97.5 | 99.8 |
| metal nut | 98.2 | 98.5 | 98.7 | 98.0 | 97.3 | 98.9 | 98.9 |
| pill | 98.8 | 98.8 | 97.6 | 98.7 | 98.2 | 98.9 | 96.4 |
| screw | 93.9 | 94.5 | 99.7 | 98.9 | 99.6 | 98.2 | 98.8 |
| tile | 97.8 | 97.8 | 99.5 | 98.4 | 95.7 | 99.0 | 98.7 |
| toothbrush | 99.4 | 99.2 | 98.1 | 99.4 | 99.1 | 99.3 | 99.1 |
| transistor | 93.3 | 96.6 | 90.0 | 95.5 | 93.0 | 92.8 | 96.7 |
| wood | 95.2 | 95.7 | 97.2 | 98.8 | 95.4 | 97.8 | 96.8 |
| zipper | 97.4 | 97.8 | 98.6 | 97.6 | 98.2 | 98.5 | 99.3 |
Tab. 2 Pixel- level AUC of different methods on MVTec AD dataset
| 类别 | PatchCore[ | PaDiM[ | DRÆM[ | STPM[ | RD4AD[ | DestSeg[ | DeRD |
|---|---|---|---|---|---|---|---|
| 平均 | 96.4 | 96.6 | 97.5 | 95.4 | 97.8 | 98.0 | 98.4 |
| bottle | 98.8 | 98.4 | 99.3 | 98.3 | 98.8 | 99.2 | 98.6 |
| cable | 94.6 | 95.4 | 95.4 | 88.4 | 97.0 | 96.3 | 97.8 |
| capsule | 92.1 | 90.6 | 94.0 | 96.9 | 98.6 | 98.0 | 98.2 |
| carpet | 99.0 | 98.9 | 96.2 | 98.8 | 98.9 | 97.5 | 99.2 |
| grid | 96.5 | 96.5 | 99.6 | 76.5 | 99.3 | 99.2 | 98.4 |
| hazelnut | 93.8 | 93.0 | 99.5 | 87.8 | 99.0 | 99.3 | 99.5 |
| leather | 98.0 | 98.1 | 98.9 | 98.6 | 99.4 | 97.5 | 99.8 |
| metal nut | 98.2 | 98.5 | 98.7 | 98.0 | 97.3 | 98.9 | 98.9 |
| pill | 98.8 | 98.8 | 97.6 | 98.7 | 98.2 | 98.9 | 96.4 |
| screw | 93.9 | 94.5 | 99.7 | 98.9 | 99.6 | 98.2 | 98.8 |
| tile | 97.8 | 97.8 | 99.5 | 98.4 | 95.7 | 99.0 | 98.7 |
| toothbrush | 99.4 | 99.2 | 98.1 | 99.4 | 99.1 | 99.3 | 99.1 |
| transistor | 93.3 | 96.6 | 90.0 | 95.5 | 93.0 | 92.8 | 96.7 |
| wood | 95.2 | 95.7 | 97.2 | 98.8 | 95.4 | 97.8 | 96.8 |
| zipper | 97.4 | 97.8 | 98.6 | 97.6 | 98.2 | 98.5 | 99.3 |
| 类别 | PatchCore[ | PaDiM[ | DRÆM[ | STPM[ | RD4AD[ | DestSeg[ | DeRD |
|---|---|---|---|---|---|---|---|
| 平均 | 45.4 | 45.2 | 68.9 | 51.8 | 58.0 | 71.1 | 73.5 |
| bottle | 76.7 | 73.0 | 89.7 | 73.2 | 78.7 | 85.7 | 89.9 |
| cable | 34.1 | 34.3 | 62.4 | 32.7 | 52.7 | 56.1 | 60.4 |
| capsule | 42.0 | 33.4 | 42.7 | 70.6 | 45.1 | 53.2 | 54.5 |
| carpet | 46.7 | 49.7 | 63.8 | 47.0 | 57.4 | 70.0 | 80.3 |
| grid | 63.3 | 58.0 | 55.3 | 29.9 | 49.2 | 56.2 | 54.8 |
| hazelnut | 39.8 | 37.4 | 87.7 | 40.0 | 62.1 | 82.3 | 87.2 |
| leather | 41.0 | 45.2 | 69.0 | 54.6 | 48.2 | 68.1 | 73.0 |
| metal nut | 33.1 | 39.4 | 91.4 | 36.3 | 79.1 | 87.6 | 92.9 |
| pill | 56.7 | 60.2 | 45.9 | 66.9 | 78.4 | 79.8 | 83.0 |
| screw | 33.5 | 24.9 | 70.5 | 45.2 | 53.6 | 52.7 | 47.1 |
| tile | 53.2 | 51.7 | 96.9 | 59.6 | 53.2 | 88.5 | 92.6 |
| toothbrush | 47.9 | 40.6 | 53.3 | 49.1 | 51.8 | 70.6 | 57.3 |
| transistor | 57.8 | 71.3 | 51.3 | 70.1 | 54.9 | 64.3 | 75.3 |
| wood | 43.1 | 42.3 | 80.8 | 80.1 | 48.2 | 74.3 | 74.4 |
| zipper | 12.8 | 16.6 | 71.9 | 22.0 | 57.1 | 77.3 | 79.8 |
Tab. 3 Pivel-level AP of different methods on MVTec AD dataset
| 类别 | PatchCore[ | PaDiM[ | DRÆM[ | STPM[ | RD4AD[ | DestSeg[ | DeRD |
|---|---|---|---|---|---|---|---|
| 平均 | 45.4 | 45.2 | 68.9 | 51.8 | 58.0 | 71.1 | 73.5 |
| bottle | 76.7 | 73.0 | 89.7 | 73.2 | 78.7 | 85.7 | 89.9 |
| cable | 34.1 | 34.3 | 62.4 | 32.7 | 52.7 | 56.1 | 60.4 |
| capsule | 42.0 | 33.4 | 42.7 | 70.6 | 45.1 | 53.2 | 54.5 |
| carpet | 46.7 | 49.7 | 63.8 | 47.0 | 57.4 | 70.0 | 80.3 |
| grid | 63.3 | 58.0 | 55.3 | 29.9 | 49.2 | 56.2 | 54.8 |
| hazelnut | 39.8 | 37.4 | 87.7 | 40.0 | 62.1 | 82.3 | 87.2 |
| leather | 41.0 | 45.2 | 69.0 | 54.6 | 48.2 | 68.1 | 73.0 |
| metal nut | 33.1 | 39.4 | 91.4 | 36.3 | 79.1 | 87.6 | 92.9 |
| pill | 56.7 | 60.2 | 45.9 | 66.9 | 78.4 | 79.8 | 83.0 |
| screw | 33.5 | 24.9 | 70.5 | 45.2 | 53.6 | 52.7 | 47.1 |
| tile | 53.2 | 51.7 | 96.9 | 59.6 | 53.2 | 88.5 | 92.6 |
| toothbrush | 47.9 | 40.6 | 53.3 | 49.1 | 51.8 | 70.6 | 57.3 |
| transistor | 57.8 | 71.3 | 51.3 | 70.1 | 54.9 | 64.3 | 75.3 |
| wood | 43.1 | 42.3 | 80.8 | 80.1 | 48.2 | 74.3 | 74.4 |
| zipper | 12.8 | 16.6 | 71.9 | 22.0 | 57.1 | 77.3 | 79.8 |
| MSFD | MB | Seg | AUC | AP |
|---|---|---|---|---|
| 97.8 | 58.0 | |||
| √ | 98.1 | 64.3 | ||
| √ | 98.0 | 62.1 | ||
| √ | √ | 98.1 | 67.5 | |
| √ | √ | √ | 98.4 | 73.5 |
Tab. 4 Ablation results of different module combinations unit: %
| MSFD | MB | Seg | AUC | AP |
|---|---|---|---|---|
| 97.8 | 58.0 | |||
| √ | 98.1 | 64.3 | ||
| √ | 98.0 | 62.1 | ||
| √ | √ | 98.1 | 67.5 | |
| √ | √ | √ | 98.4 | 73.5 |
| 异常定位方法 | transistor | leather |
|---|---|---|
| stage1 | 70.3 | 95.3 |
| stage2 | 85.7 | 97.8 |
| stage3 | 88.4 | 96.9 |
| stage1,2,3 | 82.6 | 97.8 |
| Seg | 96.7 | 98.6 |
Tab. 5 AUC comparison of different anomaly localization methods
| 异常定位方法 | transistor | leather |
|---|---|---|
| stage1 | 70.3 | 95.3 |
| stage2 | 85.7 | 97.8 |
| stage3 | 88.4 | 96.9 |
| stage1,2,3 | 82.6 | 97.8 |
| Seg | 96.7 | 98.6 |
| [1] | BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD — a comprehensive real-world dataset for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9584-9592. |
| [2] | PERERA P, NALLAPATI R, XIANG B. OCGAN: one-class novelty detection using GANs with constrained latent representations[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2893-2901. |
| [3] | SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classifier for novelty detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3379-3388. |
| [4] | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis, 2019, 54: 30-44. |
| [5] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
| [6] | ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14298-14308. |
| [7] | DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]// Proceedings of the 2021 International Conference on Pattern Recognition, LNCS 12664. Cham: Springer, 2021: 475-489. |
| [8] | 刘永江,陈斌.基于多尺度记忆库的像素级无监督工业异常检测[J].计算机应用,2024,44(11):3587-3594. |
| LIU Y J, CHEN B. Pixel-level unsupervised industrial anomaly detection based on multi-scale memory bank[J]. Journal of Computer Applications, 2024, 44(11): 3587-3594. | |
| [9] | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2024-08-02].. |
| [10] | BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191. |
| [11] | SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14897-14907. |
| [12] | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. |
| [13] | DENG H, LI X. Anomaly detection via reverse distillation from one-class embedding[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9727-9736. |
| [14] | TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24511-24520. |
| [15] | BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]// Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications — Volume 5: VISAPP. Setúbal: SciTePress, 2019: 372-380. |
| [16] | VASILEV A, GOLKOV V, MEISSNER M, et al. q-Space novelty detection with variational autoencoders[C]// Proceedings of the 2020 Workshop on Computational Diffusion MRI: MICCAI Workshop, MATHVISUAL. Cham: Springer, 2020: 113-124. |
| [17] | WANG G, HAN S, DING E, et al. Student-teacher feature pyramid matching for anomaly detection[C]// Proceedings of the 2021 British Machine Vision Conference. Durham: BMVA Press, 2021: No.1273. |
| [18] | BATZNER K, HECKLER L, KÖNIG R. EfficientAD: accurate visual anomaly detection at millisecond-level latencies[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 127-137. |
| [19] | ZHANG X, LI S, LI X, et al. DeSTSeg: segmentation guided denoising student-teacher for anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3914-3923. |
| [20] | LI C L, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9659-9669. |
| [21] | ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRÆM — a discriminatively trained reconstruction embedding for surface anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8310-8319. |
| [22] | ZHANG X, XU M, ZHOU X. RealNet: a feature selection network with realistic synthetic anomaly for anomaly detection[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16699-16708. |
| [23] | ZAVRTANIK V, KRISTAN M, SKOČAJ D. DSR — a dual subspace re-projection network for surface anomaly detection[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13691. Cham: Springer, 2022: 539-554. |
| [24] | YANG M, WU P, FENG H. MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities[J]. Engineering Applications of Artificial Intelligence, 2023, 119: No.105835. |
| [1] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
| [2] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [3] | Zhiyuan WANG, Tao PENG, Jie YANG. Integrating internal and external data for out-of-distribution detection training and testing [J]. Journal of Computer Applications, 2025, 45(8): 2497-2506. |
| [4] | Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays [J]. Journal of Computer Applications, 2025, 45(7): 2369-2377. |
| [5] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
| [6] | Yulin HE, Xu LI, Yingting HE, Laizhong CUI, Zhexue HUANG. Subspace Gaussian mixture model clustering ensemble algorithm based on maximum mean discrepancy [J]. Journal of Computer Applications, 2025, 45(6): 1712-1723. |
| [7] | Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(6): 1784-1792. |
| [8] | Longbo YAN, Wentao MAO, Zhihong ZHONG, Lilin FAN. Robust unsupervised multi-task anomaly detection method for defect diagnosis of urban drainage pipe network [J]. Journal of Computer Applications, 2025, 45(6): 1833-1840. |
| [9] | Mingfeng YU, Yongbin QIN, Ruizhang HUANG, Yanping CHEN, Chuan LIN. Multi-label text classification method based on contrastive learning enhanced dual-attention mechanism [J]. Journal of Computer Applications, 2025, 45(6): 1732-1740. |
| [10] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
| [11] | Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization [J]. Journal of Computer Applications, 2025, 45(6): 1971-1979. |
| [12] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
| [13] | Wenbin HU, Tianxiang CAI, Tianle HAN, Zhaoman ZHONG, Changxia MA. Multimodal sarcasm detection model integrating contrastive learning with sentiment analysis [J]. Journal of Computer Applications, 2025, 45(5): 1432-1438. |
| [14] | Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection [J]. Journal of Computer Applications, 2025, 45(5): 1658-1670. |
| [15] | Zihe CHEN, Bin CHEN. Unsupervised point cloud anomaly detection based on multi-representation fusion [J]. Journal of Computer Applications, 2025, 45(5): 1677-1685. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||