Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3896-3908.DOI: 10.11772/j.issn.1001-9081.2024121733
• Cyber security • Previous Articles Next Articles
Chengyi WANG1, Lei XU2, Jinyin CHEN1,3, Hongjun QIU4
Received:2024-12-10
Revised:2025-03-27
Accepted:2025-04-01
Online:2025-04-15
Published:2025-12-10
Contact:
Lei XU
About author:WANG Chengyi, born in 2000, M. S. candidate. His research interests include artificial intelligence security, deep learning, reinforcement learning.Supported by:王诚熠1, 徐磊2, 陈晋音1,3, 邱洪君4
通讯作者:
徐磊
作者简介:王诚熠(2000—),男,浙江永康人,硕士研究生,主要研究方向:人工智能安全、深度学习、强化学习基金资助:CLC Number:
Chengyi WANG, Lei XU, Jinyin CHEN, Hongjun QIU. Cyber anti-mapping method based on adaptive perturbation[J]. Journal of Computer Applications, 2025, 45(12): 3896-3908.
王诚熠, 徐磊, 陈晋音, 邱洪君. 基于自适应扰动的网络防测绘方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3896-3908.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121733
| 方法 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | |
| 基准线(benchmark) | 0.30 | 1.00 | 2.00 | 2.85 | 3.70 | 4.50 | 4.75 | 5.20 | 5.75 | 6.05 |
| DDPG | 0.20 | 1.15 | 1.50 | 2.70 | 2.30 | 3.20 | 3.50 | 2.95 | 3.00 | 4.20 |
Tab. 1 Numerical comparison of cyber mapping delay under different traffic intensities
| 方法 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | |
| 基准线(benchmark) | 0.30 | 1.00 | 2.00 | 2.85 | 3.70 | 4.50 | 4.75 | 5.20 | 5.75 | 6.05 |
| DDPG | 0.20 | 1.15 | 1.50 | 2.70 | 2.30 | 3.20 | 3.50 | 2.95 | 3.00 | 4.20 |
| 方法 | 扰动大小 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| DDPG | — | 0.20 | 1.15 | 1.50 | 2.70 | 2.30 | 3.20 | 3.50 | 2.95 | 3.00 | 4.20 |
| AIP | 0.1 | 0.40 | 1.15 | 2.50 | 3.80 | 6.20 | 5.10 | 6.10 | 6.20 | 5.80 | 10.20 |
Tab. 2 Numerical comparison of AIP defense performance under different traffic intensities
| 方法 | 扰动大小 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| DDPG | — | 0.20 | 1.15 | 1.50 | 2.70 | 2.30 | 3.20 | 3.50 | 2.95 | 3.00 | 4.20 |
| AIP | 0.1 | 0.40 | 1.15 | 2.50 | 3.80 | 6.20 | 5.10 | 6.10 | 6.20 | 5.80 | 10.20 |
| 方法 | 扰动大小 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| DDPG | — | 0.20 | 1.15 | 1.50 | 2.70 | 2.30 | 3.20 | 3.50 | 2.95 | 3.00 | 4.20 |
| AIP | 0.1 | 0.40 | 1.15 | 2.50 | 3.80 | 6.20 | 5.10 | 6.10 | 6.20 | 5.80 | 10.20 |
| 0.2 | 1.00 | 1.70 | 3.20 | 4.20 | 6.80 | 5.90 | 6.50 | 6.80 | 9.50 | 11.10 | |
| 0.3 | 1.70 | 2.20 | 4.00 | 4.90 | 7.50 | 6.80 | 8.10 | 8.80 | 11.50 | 13.80 | |
Tab. 3 Numerical comparison of AIP defense performance under different perturbation sizes
| 方法 | 扰动大小 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| DDPG | — | 0.20 | 1.15 | 1.50 | 2.70 | 2.30 | 3.20 | 3.50 | 2.95 | 3.00 | 4.20 |
| AIP | 0.1 | 0.40 | 1.15 | 2.50 | 3.80 | 6.20 | 5.10 | 6.10 | 6.20 | 5.80 | 10.20 |
| 0.2 | 1.00 | 1.70 | 3.20 | 4.20 | 6.80 | 5.90 | 6.50 | 6.80 | 9.50 | 11.10 | |
| 0.3 | 1.70 | 2.20 | 4.00 | 4.90 | 7.50 | 6.80 | 8.10 | 8.80 | 11.50 | 13.80 | |
| 方法 | 扰动大小 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| FGSM | 0.3 | 0.20 | 1.30 | 3.50 | 4.50 | 6.80 | 6.20 | 7.50 | 8.00 | 9.80 | 11.50 |
| RA | 0.3 | 0.20 | 1.30 | 3.20 | 4.40 | 6.60 | 5.90 | 7.20 | 7.40 | 9.00 | 10.50 |
| AIP | 0.3 | 1.70 | 2.20 | 4.00 | 4.90 | 7.50 | 6.80 | 8.10 | 8.80 | 11.50 | 13.80 |
Tab. 4 Numerical comparison of different defense methods under different traffic intensities
| 方法 | 扰动大小 | 不同流量强度的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| FGSM | 0.3 | 0.20 | 1.30 | 3.50 | 4.50 | 6.80 | 6.20 | 7.50 | 8.00 | 9.80 | 11.50 |
| RA | 0.3 | 0.20 | 1.30 | 3.20 | 4.40 | 6.60 | 5.90 | 7.20 | 7.40 | 9.00 | 10.50 |
| AIP | 0.3 | 1.70 | 2.20 | 4.00 | 4.90 | 7.50 | 6.80 | 8.10 | 8.80 | 11.50 | 13.80 |
| 方法 | 超参数 | 不同交互步数的时延/s | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 扰动大小 | 流量强度/% | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1 000 | |
| SHD | 0.3 | 125 | 16.10 | 4.00 | 4.70 | 4.90 | 4.20 | 3.90 | 3.30 | 4.30 | 4.90 | 3.40 |
| DHD-Q | 0.3 | 125 | 14.10 | 3.70 | 14.70 | 9.20 | 11.40 | 3.60 | 12.80 | 8.10 | 12.60 | 4.30 |
| AIP | 0.3 | 125 | 7.10 | 13.80 | 14.20 | 14.60 | 14.00 | 13.40 | 13.70 | 14.10 | 14.20 | 13.70 |
Tab. 5 Effect comparison of AIP and different node-cheating defense methods
| 方法 | 超参数 | 不同交互步数的时延/s | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 扰动大小 | 流量强度/% | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1 000 | |
| SHD | 0.3 | 125 | 16.10 | 4.00 | 4.70 | 4.90 | 4.20 | 3.90 | 3.30 | 4.30 | 4.90 | 3.40 |
| DHD-Q | 0.3 | 125 | 14.10 | 3.70 | 14.70 | 9.20 | 11.40 | 3.60 | 12.80 | 8.10 | 12.60 | 4.30 |
| AIP | 0.3 | 125 | 7.10 | 13.80 | 14.20 | 14.60 | 14.00 | 13.40 | 13.70 | 14.10 | 14.20 | 13.70 |
| 方法 | 扰动大小 | 不同流量强度下的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| ALD | 0.3 | 1.00 | 1.50 | 3.50 | 4.60 | 7.00 | 6.50 | 7.80 | 8.20 | 10.00 | 12.20 |
| TPR-DC | — | 0.80 | 1.30 | 3.20 | 4.40 | 6.60 | 5.90 | 7.20 | 7.40 | 9.00 | 10.80 |
| AIP | 0.3 | 1.70 | 2.20 | 4.00 | 4.90 | 7.50 | 6.80 | 8.10 | 8.80 | 11.50 | 13.80 |
Tab. 6 Numerical comparison of defense performance of different components in AIP
| 方法 | 扰动大小 | 不同流量强度下的时延/s | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 12.50% | 25.00% | 37.50% | 50.00% | 62.50% | 75.00% | 87.50% | 100.00% | 112.50% | 125.00% | ||
| ALD | 0.3 | 1.00 | 1.50 | 3.50 | 4.60 | 7.00 | 6.50 | 7.80 | 8.20 | 10.00 | 12.20 |
| TPR-DC | — | 0.80 | 1.30 | 3.20 | 4.40 | 6.60 | 5.90 | 7.20 | 7.40 | 9.00 | 10.80 |
| AIP | 0.3 | 1.70 | 2.20 | 4.00 | 4.90 | 7.50 | 6.80 | 8.10 | 8.80 | 11.50 | 13.80 |
| [1] | JIANG B, ORMELING F. Mapping cyberspace: visualizing, analysing and exploring virtual worlds[J]. The Cartographic Journal, 2000, 37(2): 117-122. |
| [2] | 刘红,姚旺君,孙彻,等. 网络空间测绘系统分类及应用综述[J]. 信息技术与网络安全, 2021, 40(10): 16-21, 28. |
| LIU H, YAO W J, SUN C, et al. Classification and application of cyberspace surveying and mapping system[J]. Information Technology and Network Security, 2021, 40(10): 16-21, 28. | |
| [3] | AGHDAM H H, GONZALEZ-GARCIA A, LOPEZ A, et al. Active learning for deep detection neural networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3671-3679. |
| [4] | 赵静静,衷璐洁. 基于排队时延主动探测的多路传输拥塞控制[J]. 计算机工程与设计, 2021, 42(3): 628-635. |
| ZHAO J J, ZHONG L J. Congestion control of multipath transmission based on proactive RTT probing[J]. Computer Engineering and Design, 2021, 42(3): 628-635. | |
| [5] | RANJANI H G, PUTHENNURAKEL S P, BRISEBOIS A, et al. Time series based approach for detecting passive intermodulation occurrences in cellular network[C]// Proceedings of the 14th International Conference on Communication Systems and Networks. Piscataway: IEEE, 2022: 630-638. |
| [6] | 王永霞. 计量实验室内部网络资产主被动协同探测技术的研究与分析[J]. 实验与分析, 2023, 1(2): 47-52. |
| WANG Y X. Internal network assets of active and passive collaborative detection technology research and analysis of measurement laboratory[J]. Labor Praxis, 2023, 1(2): 47-52. | |
| [7] | HUANG X, ALI S, WANG C, et al. Deep domain adaptation based cloud type detection using active and passive satellite data[C]// Proceedings of the 2020 IEEE International Conference on Big Data. Piscataway: IEEE, 2020: 1330-1337. |
| [8] | ANJUM N, LATIF Z, LEE C, et al. MIND: a multi-source data fusion scheme for intrusion detection in networks[J]. Sensors, 2021, 21(14): No.4941. |
| [9] | ZABALA L, DONCEL J, FERRO A. Optimality of a network monitoring agent and validation in a real probe[J]. Mathematics, 2023, 11(3): No.610. |
| [10] | CASAS-VELASCO D M, RENDON O M C, FONSECA N L S DA. Intelligent routing based on reinforcement learning for software-defined networking[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 870-881. |
| [11] | DING R, XU Y, GAO F, et al. Deep reinforcement learning for router selection in network with heavy traffic[J]. IEEE Access, 2019, 7: 37109-37120. |
| [12] | XU C, ZHUANG W, ZHANG H. A deep-reinforcement learning approach for SDN routing optimization[C]// Proceedings of the 4th International Conference on Computer Science and Application Engineering. New York: ACM, 2020: No.26. |
| [13] | PAN W, LIU S Q. Deep reinforcement learning for the dynamic and uncertain vehicle routing problem[J]. Applied Intelligence, 2023, 53(1): 405-422. |
| [14] | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning [EB/OL]. [2024-11-25] . |
| [15] | YOUNG G. Hype cycle for threat-facing technologies, 2017[R/OL]. [2024-11-19]. . |
| [16] | HORÁK K, ZHU Q, BOŠANSKÝ B. Manipulating adversary’s belief: a dynamic game approach to deception by design for proactive network security[C]// Proceedings of the 2017 International Conference on Decision and Game Theory for Security, LNCS 10575. Cham: Springer, 2017: 273-294. |
| [17] | SAYED M A, ANWAR A H, KIEKINTVELD C, et al. Honeypot allocation for cyber deception in dynamic tactical networks: a game theoretic approach[C]// Proceedings of the 2023 International Conference on Decision and Game Theory for Security, LNCS 14167. Cham: Springer, 2023: 195-214. |
| [18] | WANG S, PEI Q, WANG J, et al. An intelligent deployment policy for deception resources based on reinforcement learning[J]. IEEE Access, 2020, 8: 35792-35804. |
| [19] | 胡永进,马骏,郭渊博,等. 基于多阶段网络欺骗博弈的主动防御研究[J]. 通信学报, 2020, 41(8): 32-42. |
| HU Y J, MA J, GUO Y B, et al. Research on active defense based on multi-stage cyber deception game[J]. Journal on Communications, 2020, 41(8): 32-42. | |
| [20] | LI H, GUO Y, HUO S, et al. Defensive deception framework against reconnaissance attacks in the cloud with deep reinforcement learning[J]. SCIENCE CHINA Information Sciences, 2022, 65(7): No.170305. |
| [21] | 刘小虎,张恒巍,张玉臣,等. 欺骗谋略在网络空间防御行动中运用[J]. 指挥与控制学报, 2024, 10(1): 117-121. |
| LIU X H, ZHANG H W, ZHANG Y C, et al. Deception strategy in cyberspace defense actions[J]. Journal of Command and Control, 2024, 10(1): 117-121. | |
| [22] | 雷程,马多贺,张红旗,等. 基于最优路径跳变的网络移动目标防御技术[J]. 通信学报, 2017, 38(3): 133-143. |
| LEI C, MA D H, ZHANG H Q, et al. Network moving target defense technique based on optimal forwarding path migration[J]. Journal on Communications, 2017, 38(3): 133-143. | |
| [23] | QU Y, MA H, JIANG Y, et al. A network intrusion detection method based on domain confusion[J]. Electronics, 2023, 12(5): No.1255. |
| [24] | KIM J, NAM J, LEE S, et al. BottleNet: hiding network bottlenecks using SDN-based topology deception [J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3138-3153. |
| [25] | XU W, CHEN L, YANG H. A comprehensive discussion on deep reinforcement learning [C]// Proceedings of the 2021 International Conference on Communications, Information System and Computer Engineering. Piscataway: IEEE, 2021: 697-702. |
| [26] | SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 387-395. |
| [27] | KAISER Ł, BABAEIZADEH M, MILOS P, et al. Model-based reinforcement learning for Atari [EB/OL]. [2024-11-19]. . |
| [28] | 杜智华,赖振清. 基于深度强化学习实时战略卡牌游戏对战设计[J]. 计算机仿真, 2022, 39(2): 260-265. |
| DU Z H, LAI Z Q. Design of real-time strategic card game based on deep reinforcement learning[J]. Computer Simulation, 2022, 39(2): 260-265. | |
| [29] | ZHOU M, YU Y, QU X. Development of an efficient driving strategy for connected and automated vehicles at signalized intersections: a reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 433-443. |
| [30] | 周恒恒,高松,王鹏伟,等. 基于深度强化学习的智能车辆行为决策研究[J]. 科学技术与工程, 2024, 24(12): 5194-5203. |
| ZHOU H H, GAO S, WANG P W, et al. Intelligent vehicles behavior decision-making based on deep reinforcement learning[J]. Science Technology and Engineering, 2024, 24(12): 5194-5203. | |
| [31] | YU L, XIE W, XIE D, et al. Deep reinforcement learning for smart home energy management[J]. IEEE Internet of Things Journal, 2020, 7(4): 2751-2762. |
| [32] | KIM G, KIM Y, LIM H. Deep reinforcement learning-based routing on software-defined networks[J]. IEEE Access, 2022, 10: 18121-18133. |
| [33] | HE Q, WANG Y, WANG X, et al. Routing optimization with deep reinforcement learning in knowledge defined networking[J]. IEEE Transactions on Mobile Computing, 2024, 23(2): 1444-1455. |
| [34] | 高陈强,朱向阳,喻敬海. 基于OMNeT++的大规模确定性网络仿真实践[J]. 电信科学, 2023, 39(11): 59-68. |
| GAO C Q, ZHU X Y, YU J H. Large-scale OMNeT++-based deterministic networking simulation practice[J]. Telecommunications Science, 2023, 39(11): 59-68. | |
| [35] | ROUGHAN M. Simplifying the synthesis of internet traffic matrices[J]. ACM SIGCOMM Computer Communication Review, 2005, 35(5): 93-96. |
| [1] | Tianyu XUE, Aiping LI, Liguo DUAN. Vehicular edge computing scheme with task offloading and resource optimization [J]. Journal of Computer Applications, 2025, 45(6): 1766-1775. |
| [2] | Pengcheng XU, Lei HE, Chuan LI, Weiqi QIAN, Tun ZHAO. Deep symbolic regression method based on Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1455-1463. |
| [3] | Huahua WANG, Liang HUANG, Jiajie CHEN, Jiening FANG. Dynamic allocation algorithm for multi-beam subcarriers of low orbit satellites based on deep reinforcement learning [J]. Journal of Computer Applications, 2025, 45(2): 571-577. |
| [4] | Jing WANG, Xuming FANG. Intelligent joint power and channel allocation algorithm for Wi-Fi7 multi-link integrated communication and sensing [J]. Journal of Computer Applications, 2025, 45(2): 563-570. |
| [5] | Xiang KUANG, Zhen MA, Wanchun ZHU, Zhi ZHANG, Yunfei CUI. Secure and reliable service function chain deployment based on encoder-decoder structured reinforcement learning [J]. Journal of Computer Applications, 2025, 45(12): 3947-3956. |
| [6] | Lin WEI, Shihao ZHANG, Mengyang HE. Workflow task optimization and energy-efficient offloading method for computing power network [J]. Journal of Computer Applications, 2025, 45(12): 3916-3924. |
| [7] | Jun ZENG, Yinghua TONG, Defang WANG. Anomaly detection method based on cumulative probability fluctuation and automated clustering [J]. Journal of Computer Applications, 2025, 45(12): 3864-3871. |
| [8] | Haoxiang XU, Dunhui YU, Yichen DENG, Kui XIAO. Knowledge graph constrained question answering model based on hierarchical reinforcement learning [J]. Journal of Computer Applications, 2025, 45(12): 3764-3770. |
| [9] | Xiaojuan CHEN, Wei ZHANG. Task allocation of unmanned aerial vehicle for rural last-mile delivery based on reinforcement learning [J]. Journal of Computer Applications, 2025, 45(12): 4055-4063. |
| [10] | Shuai ZHOU, Hao FU, Wei LIU. Spatial-temporal Transformer-based hybrid return implicit Q-learning for crowd navigation [J]. Journal of Computer Applications, 2025, 45(11): 3666-3673. |
| [11] | Lin WEI, Jinyang LI, Yajie WANG, Mengyang HE. Highly reliable matching method based on multi-dimensional resource measurement and rescheduling in computing power network [J]. Journal of Computer Applications, 2025, 45(11): 3632-3641. |
| [12] | Jinghua ZHAO, Zhu ZHANG, Xiting LYU, Huidan LIN. Multiscale information diffusion prediction model based on hypergraph neural network [J]. Journal of Computer Applications, 2025, 45(11): 3529-3539. |
| [13] | Yanpeng ZHANG, Yuqian ZHAO, Fan ZHANG, Tenghai QIU, Gui GUI, Lingli YU. Capacitated vehicle routing problem solving method based on improved MAML and GVAE [J]. Journal of Computer Applications, 2025, 45(11): 3642-3648. |
| [14] | Yu WANG, Mingyue ZHAO, Xiaolin ZHOU. Task-based assistive robot path planning in nursing home scenarios [J]. Journal of Computer Applications, 2025, 45(10): 3270-3276. |
| [15] | Zijun MIAO, Fei LUO, Weichao DING, Wenbo DONG. Traffic signal control algorithm based on overall state prediction and fair experience replay [J]. Journal of Computer Applications, 2025, 45(1): 337-344. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||