Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3270-3276.DOI: 10.11772/j.issn.1001-9081.2024101534
• Advanced computing • Previous Articles
Yu WANG(), Mingyue ZHAO, Xiaolin ZHOU
Received:
2024-10-31
Revised:
2024-12-27
Accepted:
2024-12-30
Online:
2025-03-07
Published:
2025-10-10
Contact:
Yu WANG
About author:
WANG Yu, born in 1980, Ph. D., associate professor. Her research interests include machine learning, intelligent decision-making.Supported by:
通讯作者:
王昱
作者简介:
王昱(1980—),女,辽宁沈阳人,副教授,博士,主要研究方向:机器学习、智能决策 Email:wangyu@sau.edu.cn基金资助:
CLC Number:
Yu WANG, Mingyue ZHAO, Xiaolin ZHOU. Task-based assistive robot path planning in nursing home scenarios[J]. Journal of Computer Applications, 2025, 45(10): 3270-3276.
王昱, 赵明月, 周小琳. 养老院场景下基于任务的辅助机器人路径规划[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3270-3276.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101534
参数名 | 符号 | 值 | 参数名 | 符号 | 值 |
---|---|---|---|---|---|
经验池大小 | M | 65 536 | 软更新学习率 | τ | 0.01 |
训练批次大小 | N | 64 | 最大训练次数 | E | 1 000 |
Actor网络训练率 | la | 3×10-4 | 加权系数 | λ1,λ2 | 0.5 |
Critic网络训练率 | lc | 3×10-4 | 机器人步数 | T | 500 |
奖励折扣率 | γ | 0.9 |
Tab. 1 Hyperparameter details
参数名 | 符号 | 值 | 参数名 | 符号 | 值 |
---|---|---|---|---|---|
经验池大小 | M | 65 536 | 软更新学习率 | τ | 0.01 |
训练批次大小 | N | 64 | 最大训练次数 | E | 1 000 |
Actor网络训练率 | la | 3×10-4 | 加权系数 | λ1,λ2 | 0.5 |
Critic网络训练率 | lc | 3×10-4 | 机器人步数 | T | 500 |
奖励折扣率 | γ | 0.9 |
算法 | 平均路径长度/m | 成功率 | 平均步长 |
---|---|---|---|
SAC | 48 | 0.75 | 270 |
WOA-SAC | 43 | 0.80 | 190 |
Tab. 2 Performance comparison between SAC and WOA-SAC
算法 | 平均路径长度/m | 成功率 | 平均步长 |
---|---|---|---|
SAC | 48 | 0.75 | 270 |
WOA-SAC | 43 | 0.80 | 190 |
[1] | LAI X, LI J, CHAMBERS J. Enhanced center constraint weighted A* algorithm for path planning of petrochemical inspection robot[J]. Journal of Intelligent and Robotic Systems, 2021, 102(4): No.78. |
[2] | JIANG Q, MAN Y, PU X. Improved path planning algorithm based on RRT[C]// Proceedings of the 2nd International Conference on Signal Processing and Intelligent Computing. Piscataway: IEEE, 2024: 463-466. |
[3] | FU S. Robot path planning optimization based on RRT and APF fusion algorithm[C]// Proceedings of the 8th International Conference on Robotics and Automation Sciences. Piscataway: IEEE, 2024: 32-36. |
[4] | FAN J, CHEN X, LIANG X. UAV trajectory planning based on bi-directional APF-RRT* algorithm with goal-biased[J]. Expert Systems with Applications, 2023, 213(Pt C): No.119137. |
[5] | LAN W, JIN X, WANG T, et al. Improved RRT algorithms to solve path planning of multi-glider in time-varying ocean currents[J]. IEEE Access, 2021, 9: 158098-158115. |
[6] | YAN Z, ZHAO L, WANG Y, et al. Path planning of AUV for obstacle avoidance with improved artificial potential field[C]// Proceedings of the 49th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2023: 1-5. |
[7] | LI W, CHEN Y, XIANG L. Cooperative path planning of UAV formation based on improved artificial potential field[C]// Proceedings of the IEEE 2nd International Conference on Electronic Technology, Communication and Information. Piscataway: IEEE, 2022: 636-641. |
[8] | HAMILTON J, STEFANAKOS I, CALINESCU R, et al. Towards adaptive planning of assistive-care robot tasks[EB/OL]. [2024-08-22].. |
[9] | 李少波,宋启松,李志昂,等. 遗传算法在机器人路径规划中的研究综述[J].科学技术与工程, 2020, 20(2): 423-431. |
LI S B, SONG Q S, LI Z A, et al. Review of genetic algorithm in robot path planning[J]. Science Technology and Engineering, 2020, 20(2): 423-431. | |
[10] | 冯豪博,胡桥,赵振轶. 基于精英族系遗传算法的AUV集群路径规划[J]. 系统工程与电子技术, 2022, 44(7):2251-2262. |
FENG H B, HU Q, ZHAO Z Y. AUV swarm path planning based on elite lineage genetic algorithm[J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. | |
[11] | 韩统,崔明朗,张伟,等. 多无人机协同空战机动决策[J]. 兵器装备工程学报, 2020, 41(4): 117-123. |
HAN T, CUI M L, ZHANG W, et al. Multi-UCAV cooperative air combat maneuvering decision[J]. Journal of Ordnance Equipment Engineering, 2020, 41(4): 117-123. | |
[12] | 吕柏行,郭志光,赵韦皓,等. 标准粒子群算法的优化方式综述[J]. 科学技术创新, 2021(28): 33-37. |
LYU B X, GUO Z G, ZHAO W H, et al. A review on optimization methods of standard particle swarm optimization[J]. Scientific and Technological Innovation, 2021(28): 33-37. | |
[13] | ZHAO J, ZHU X, SONG T. Serial manipulator time-jerk optimal trajectory planning based on hybrid IWOA-PSO algorithm[J]. IEEE Access, 2022, 10: 6592-6604. |
[14] | KATHEN M J T, SAMANIEGIO F P, FLORES I J, et al. AquaHet-PSO: an informative path planner for a fleet of autonomous surface vehicles with heterogeneous sensing capabilities based on multi-objective PSO[J]. IEEE Access, 2023, 11: 110943-110966. |
[15] | YU J, HOU J, CHEN G. Improved safety-first A-star algorithm for autonomous vehicles[C]// Proceedings of the 5th International Conference on Advanced Robotics and Mechatronics. Piscataway: IEEE, 2020: 706-710. |
[16] | CHEN Z, YU J, ZHAO Z, et al. A path-planning method considering environmental disturbance based on VPF-RRT[J]. Drones, 2023, 7(2): No.145. |
[17] | QU H, XING K, ALEXANDER T. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots[J]. Neurocomputing, 2013, 120: 509-517. |
[18] | 张荣霞,武长旭,孙同超,等. 深度强化学习及在路径规划中的研究进展[J]. 计算机工程与应用, 2021, 57(19): 44-56. |
ZHANG R X, WU C X, SUN T C, et al. Progress on deep reinforcement learning in path planning[J]. Computer Engineering and Applications, 2021, 57(19): 44-56. | |
[19] | ZHOU S, LIU X, XU Y, et al. A Deep Q-Network (DQN) based path planning method for mobile robots[C]// Proceedings of the 2018 IEEE International Conference on Information and Automation. Piscataway: IEEE, 2018: 366-371. |
[20] | DONG Y, ZOU X. Mobile robot path planning based on improved DDPG reinforcement learning algorithm[C]// Proceedings of the IEEE 11th International Conference on Software Engineering and Service Science. Piscataway: IEEE, 2020: 52-56. |
[21] | DE JESUS J C, KICH V A, KOLLING A H, et al. Soft actor-critic for navigation of mobile robots[J]. Journal of Intelligent and Robotic Systems, 2021, 102(2): No.31. |
[22] | 赵俊涛,罗小川,刘俊秘. 改进鲸鱼优化算法在机器人路径规划中的应用[J]. 东北大学学报(自然科学版), 2023, 44(8): 1065-1071. |
ZHAO J T, LUO X C, LIU J M. Application of improved whale optimization algorithm in robot path planning[J]. Journal of Northeastern University (Natural Science), 2023, 44(8): 1065-1071. | |
[23] | CUI Z, GUAN W, ZHANG X, et al. Autonomous collision avoidance decision-making method for USV based on ATL-TD3 algorithm[J]. Ocean Engineering, 2024, 312(Pt 3): No.119297. |
[1] | Tianyu XUE, Aiping LI, Liguo DUAN. Vehicular edge computing scheme with task offloading and resource optimization [J]. Journal of Computer Applications, 2025, 45(6): 1766-1775. |
[2] | Pengcheng XU, Lei HE, Chuan LI, Weiqi QIAN, Tun ZHAO. Deep symbolic regression method based on Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1455-1463. |
[3] | Xingwang WANG, Qingyang ZHANG, Shouyong JIANG, Yongquan DONG. Dynamic UAV path planning based on modified whale optimization algorithm [J]. Journal of Computer Applications, 2025, 45(3): 928-936. |
[4] | Jing WANG, Xuming FANG. Intelligent joint power and channel allocation algorithm for Wi-Fi7 multi-link integrated communication and sensing [J]. Journal of Computer Applications, 2025, 45(2): 563-570. |
[5] | Huahua WANG, Liang HUANG, Jiajie CHEN, Jiening FANG. Dynamic allocation algorithm for multi-beam subcarriers of low orbit satellites based on deep reinforcement learning [J]. Journal of Computer Applications, 2025, 45(2): 571-577. |
[6] | Zijun MIAO, Fei LUO, Weichao DING, Wenbo DONG. Traffic signal control algorithm based on overall state prediction and fair experience replay [J]. Journal of Computer Applications, 2025, 45(1): 337-344. |
[7] | Hailin XIAO, Tianyi HUANG, Qiuxiang DAI, Yuejun ZHANG, Zhongshan ZHANG. Safe reinforcement learning method for decision making of autonomous lane changing based on trajectory prediction [J]. Journal of Computer Applications, 2024, 44(9): 2958-2963. |
[8] | Haodong HE, Hao FU, Qiang WANG, Shuai ZHOU, Wei LIU. Multi-robot path following and formation based on deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(8): 2626-2633. |
[9] | Yi ZHOU, Hua GAO, Yongshen TIAN. Proximal policy optimization algorithm based on clipping optimization and policy guidance [J]. Journal of Computer Applications, 2024, 44(8): 2334-2341. |
[10] | Tian MA, Runtao XI, Jiahao LYU, Yijie ZENG, Jiayi YANG, Jiehui ZHANG. Mobile robot 3D space path planning method based on deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(7): 2055-2064. |
[11] | Xiaoyan ZHAO, Wei HAN, Junna ZHANG, Peiyan YUAN. Collaborative offloading strategy in internet of vehicles based on asynchronous deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(5): 1501-1510. |
[12] | Rui TANG, Chuanlin PANG, Ruizhi ZHANG, Chuan LIU, Shibo YUE. DDPG-based resource allocation in D2D communication-empowered cellular network [J]. Journal of Computer Applications, 2024, 44(5): 1562-1569. |
[13] | Fatang CHEN, Miao HUANG, Yufeng JIN. Resource allocation algorithm for low earth orbit satellites oriented to user demand [J]. Journal of Computer Applications, 2024, 44(4): 1242-1247. |
[14] | Xintong QIN, Zhengyu SONG, Tianwei HOU, Feiyue WANG, Xin SUN, Wei LI. Channel access and resource allocation algorithm for adaptive p-persistent mobile ad hoc network [J]. Journal of Computer Applications, 2024, 44(3): 863-868. |
[15] | Yuanchao LI, Chongben TAO, Chen WANG. Gait control method based on maximum entropy deep reinforcement learning for biped robot [J]. Journal of Computer Applications, 2024, 44(2): 445-451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||