Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3978-3986.DOI: 10.11772/j.issn.1001-9081.2024111684
• Multimedia computing and computer simulation • Previous Articles Next Articles
Yu FAN, Chunyi CHEN, Xiaojuan HU, Yanfeng LI, Haiyang YU, Ripei ZHANG, Yunbiao LIU
Received:2024-12-02
Revised:2025-03-23
Accepted:2025-04-01
Online:2025-04-08
Published:2025-12-10
Contact:
Chunyi CHEN
About author:FAN Yu, born in 1994, Ph. D. candidate. Her research interests include computer vision, image processing.Supported by:范宇, 陈纯毅, 胡小娟, 李延风, 于海洋, 张日培, 刘云彪
通讯作者:
陈纯毅
作者简介:范宇(1994—),女,内蒙古阿尔山人,博士研究生,主要研究方向:计算机视觉、图像处理基金资助:CLC Number:
Yu FAN, Chunyi CHEN, Xiaojuan HU, Yanfeng LI, Haiyang YU, Ripei ZHANG, Yunbiao LIU. Information compensation-based panoramic image super-resolution reconstruction network[J]. Journal of Computer Applications, 2025, 45(12): 3978-3986.
范宇, 陈纯毅, 胡小娟, 李延风, 于海洋, 张日培, 刘云彪. 基于信息补偿的全景图像超分辨率重建网络[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3978-3986.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111684
| 网络 | ODI-SR数据集 | SUN360数据集 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 放大因子为4倍 | 放大因子为8倍 | 放大因子为4倍 | 放大因子为8倍 | |||||||||||||
PSNR/ dB | SSIM | WS-PSNR/dB | WS-SSIM | PSNR/dB | SSIM | WS-PSNR/dB | WS-SSIM | PSNR/ dB | SSIM | WS-PSNR/dB | WS-SSIM | PSNR/dB | SSIM | WS-PSNR/dB | WS- SSIM | |
| Bicubic | 25.32 | 0.706 9 | 24.62 | 0.655 5 | 19.87 | 0.600 4 | 19.64 | 0.590 8 | 25.48 | 0.714 5 | 24.61 | 0.645 9 | 20.50 | 0.605 9 | 19.72 | 0.540 3 |
| SRCNN[ | 26.18 | 0.747 9 | 25.02 | 0.690 4 | 20.10 | 0.612 0 | 20.08 | 0.611 2 | 26.26 | 0.759 1 | 26.30 | 0.701 2 | 20.67 | 0.618 0 | 19.46 | 0.570 1 |
| VDSR[ | 26.51 | 0.748 4 | 25.92 | 0.700 9 | 21.43 | 0.647 3 | 21.19 | 0.633 4 | 26.14 | 0.762 8 | 26.36 | 0.705 7 | 21.27 | 0.624 2 | 21.60 | 0.609 1 |
| LapSRN[ | 26.73 | 0.755 9 | 25.87 | 0.694 5 | 21.98 | 0.642 4 | 20.72 | 0.621 4 | 26.73 | 0.761 4 | 26.31 | 0.700 0 | 22.11 | 0.637 4 | 20.05 | 0.599 8 |
| MemNet[ | 26.39 | 0.756 2 | 25.39 | 0.696 7 | 22.24 | 0.646 4 | 21.73 | 0.628 4 | 27.06 | 0.760 7 | 25.69 | 0.699 9 | 22.75 | 0.630 6 | 21.08 | 0.601 5 |
| MSRN[ | 26.47 | 0.764 4 | 25.51 | 0.700 3 | 23.50 | 0.657 4 | 23.34 | 0.649 6 | 27.07 | 0.761 2 | 25.91 | 0.705 1 | 23.29 | 0.644 0 | 23.19 | 0.647 7 |
| EDSR[ | 27.05 | 0.767 5 | 25.69 | 0.695 4 | 23.44 | 0.656 1 | 23.97 | 0.648 3 | 27.16 | 0.766 1 | 26.18 | 0.701 2 | 23.74 | 0.658 6 | 23.79 | 0.647 2 |
| D-DBPN[ | 26.85 | 0.764 6 | 25.50 | 0.693 2 | 23.61 | 0.659 4 | 24.15 | 0.657 3 | 27.21 | 0.762 7 | 25.92 | 0.698 7 | 23.75 | 0.650 9 | 23.70 | 0.642 1 |
| RCAN[ | 27.08 | 0.763 7 | 26.23 | 0.699 5 | 23.88 | 0.668 1 | 24.26 | 0.655 4 | 27.27 | 0.766 9 | 26.61 | 0.706 5 | 24.23 | 0.655 2 | 23.88 | 0.654 2 |
| DRN[ | 26.95 | 0.770 5 | 26.24 | 0.699 6 | 24.14 | 0.667 9 | 24.32 | 0.657 1 | 27.39 | 0.765 6 | 26.65 | 0.707 9 | 24.61 | 0.667 4 | 24.25 | 0.660 2 |
| 360-SS[ | 27.07 | 0.770 2 | 25.98 | 0.697 3 | 24.52 | 0.669 6 | 24.14 | 0.653 9 | 27.49 | 0.771 0 | 26.38 | 0.701 5 | 24.83 | 0.671 8 | 24.19 | 0.653 6 |
| LAU-Net[ | 27.21 | 0.772 8 | 26.34 | 0.705 2 | 24.71 | 0.670 5 | 0.660 2 | 27.51 | 0.775 9 | 26.48 | 0.706 2 | 25.04 | 24.24 | 0.670 8 | ||
| SPCR[ | 27.24 | 0.773 5 | 26.31 | 0.702 9 | 24.80 | 0.671 7 | 24.22 | 27.64 | 0.773 3 | 26.40 | 0.707 5 | 0.684 5 | 24.31 | 0.672 4 | ||
| OSRT[ | 25.19 | 24.25 | 0.658 9 | 27.82 | 25.01 | 0.681 3 | ||||||||||
| ICPSnet | 27.36 | 0.776 4 | 26.68 | 0.713 8 | 0.680 9 | 24.89 | 0.675 2 | 0.777 2 | 26.98 | 0.711 8 | 25.42 | 0.689 6 | 24.66 | 0.683 9 | ||
Tab. 1 Test results of different amplification factors on two datasets
| 网络 | ODI-SR数据集 | SUN360数据集 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 放大因子为4倍 | 放大因子为8倍 | 放大因子为4倍 | 放大因子为8倍 | |||||||||||||
PSNR/ dB | SSIM | WS-PSNR/dB | WS-SSIM | PSNR/dB | SSIM | WS-PSNR/dB | WS-SSIM | PSNR/ dB | SSIM | WS-PSNR/dB | WS-SSIM | PSNR/dB | SSIM | WS-PSNR/dB | WS- SSIM | |
| Bicubic | 25.32 | 0.706 9 | 24.62 | 0.655 5 | 19.87 | 0.600 4 | 19.64 | 0.590 8 | 25.48 | 0.714 5 | 24.61 | 0.645 9 | 20.50 | 0.605 9 | 19.72 | 0.540 3 |
| SRCNN[ | 26.18 | 0.747 9 | 25.02 | 0.690 4 | 20.10 | 0.612 0 | 20.08 | 0.611 2 | 26.26 | 0.759 1 | 26.30 | 0.701 2 | 20.67 | 0.618 0 | 19.46 | 0.570 1 |
| VDSR[ | 26.51 | 0.748 4 | 25.92 | 0.700 9 | 21.43 | 0.647 3 | 21.19 | 0.633 4 | 26.14 | 0.762 8 | 26.36 | 0.705 7 | 21.27 | 0.624 2 | 21.60 | 0.609 1 |
| LapSRN[ | 26.73 | 0.755 9 | 25.87 | 0.694 5 | 21.98 | 0.642 4 | 20.72 | 0.621 4 | 26.73 | 0.761 4 | 26.31 | 0.700 0 | 22.11 | 0.637 4 | 20.05 | 0.599 8 |
| MemNet[ | 26.39 | 0.756 2 | 25.39 | 0.696 7 | 22.24 | 0.646 4 | 21.73 | 0.628 4 | 27.06 | 0.760 7 | 25.69 | 0.699 9 | 22.75 | 0.630 6 | 21.08 | 0.601 5 |
| MSRN[ | 26.47 | 0.764 4 | 25.51 | 0.700 3 | 23.50 | 0.657 4 | 23.34 | 0.649 6 | 27.07 | 0.761 2 | 25.91 | 0.705 1 | 23.29 | 0.644 0 | 23.19 | 0.647 7 |
| EDSR[ | 27.05 | 0.767 5 | 25.69 | 0.695 4 | 23.44 | 0.656 1 | 23.97 | 0.648 3 | 27.16 | 0.766 1 | 26.18 | 0.701 2 | 23.74 | 0.658 6 | 23.79 | 0.647 2 |
| D-DBPN[ | 26.85 | 0.764 6 | 25.50 | 0.693 2 | 23.61 | 0.659 4 | 24.15 | 0.657 3 | 27.21 | 0.762 7 | 25.92 | 0.698 7 | 23.75 | 0.650 9 | 23.70 | 0.642 1 |
| RCAN[ | 27.08 | 0.763 7 | 26.23 | 0.699 5 | 23.88 | 0.668 1 | 24.26 | 0.655 4 | 27.27 | 0.766 9 | 26.61 | 0.706 5 | 24.23 | 0.655 2 | 23.88 | 0.654 2 |
| DRN[ | 26.95 | 0.770 5 | 26.24 | 0.699 6 | 24.14 | 0.667 9 | 24.32 | 0.657 1 | 27.39 | 0.765 6 | 26.65 | 0.707 9 | 24.61 | 0.667 4 | 24.25 | 0.660 2 |
| 360-SS[ | 27.07 | 0.770 2 | 25.98 | 0.697 3 | 24.52 | 0.669 6 | 24.14 | 0.653 9 | 27.49 | 0.771 0 | 26.38 | 0.701 5 | 24.83 | 0.671 8 | 24.19 | 0.653 6 |
| LAU-Net[ | 27.21 | 0.772 8 | 26.34 | 0.705 2 | 24.71 | 0.670 5 | 0.660 2 | 27.51 | 0.775 9 | 26.48 | 0.706 2 | 25.04 | 24.24 | 0.670 8 | ||
| SPCR[ | 27.24 | 0.773 5 | 26.31 | 0.702 9 | 24.80 | 0.671 7 | 24.22 | 27.64 | 0.773 3 | 26.40 | 0.707 5 | 0.684 5 | 24.31 | 0.672 4 | ||
| OSRT[ | 25.19 | 24.25 | 0.658 9 | 27.82 | 25.01 | 0.681 3 | ||||||||||
| ICPSnet | 27.36 | 0.776 4 | 26.68 | 0.713 8 | 0.680 9 | 24.89 | 0.675 2 | 0.777 2 | 26.98 | 0.711 8 | 25.42 | 0.689 6 | 24.66 | 0.683 9 | ||
| CSCA | IC | AF | ODI-SR数据集 | SUN360数据集 | ||
|---|---|---|---|---|---|---|
| WS-PSNR/dB | WS-SSIM | WS-PSNR/dB | WS-SSIM | |||
| × | √ | √ | 25.97 | 0.709 4 | 26.33 | 0.700 6 |
| √ | × | √ | 25.84 | 0.705 5 | 26.52 | 0.708 9 |
| √ | √ | × | 26.61 | 0.711 4 | 26.82 | 0.705 0 |
| √ | √ | √ | 26.68 | 0.713 8 | 26.98 | 0.711 8 |
Tab.2 Ablation experimental results at 4× amplification
| CSCA | IC | AF | ODI-SR数据集 | SUN360数据集 | ||
|---|---|---|---|---|---|---|
| WS-PSNR/dB | WS-SSIM | WS-PSNR/dB | WS-SSIM | |||
| × | √ | √ | 25.97 | 0.709 4 | 26.33 | 0.700 6 |
| √ | × | √ | 25.84 | 0.705 5 | 26.52 | 0.708 9 |
| √ | √ | × | 26.61 | 0.711 4 | 26.82 | 0.705 0 |
| √ | √ | √ | 26.68 | 0.713 8 | 26.98 | 0.711 8 |
| 序列 | ODI-SR数据集 | SUN360数据集 | ||
|---|---|---|---|---|
| WS-PSNR/dB | WS-SSIM | WS-PSNR/dB | WS-SSIM | |
| 1-3-5 | 24.89 | 0.675 2 | 24.40 | 0.681 6 |
| 1-3-7 | 24.59 | 0.677 3 | 24.15 | 0.682 7 |
| 3-5-7 | 24.37 | 0.678 5 | 24.33 | 0.680 8 |
Tab.3 Performance comparison of different kernel sequences in CSCA module at 8× amplification
| 序列 | ODI-SR数据集 | SUN360数据集 | ||
|---|---|---|---|---|
| WS-PSNR/dB | WS-SSIM | WS-PSNR/dB | WS-SSIM | |
| 1-3-5 | 24.89 | 0.675 2 | 24.40 | 0.681 6 |
| 1-3-7 | 24.59 | 0.677 3 | 24.15 | 0.682 7 |
| 3-5-7 | 24.37 | 0.678 5 | 24.33 | 0.680 8 |
| 网络 | 参数量/MB | GFLOPs | 运行时间/s |
|---|---|---|---|
| SRCNN[ | 8.13 | 6.75 | 0.158 |
| VDSR[ | 1.15 | 612.60 | 0.326 |
| LapSRN[ | 1.30 | 23.00 | 0.049 |
| MemNet[ | 2.30 | 45.00 | 0.085 |
| MSRN[ | 6.20 | 294.80 | 0.078 |
| EDSR[ | 45.50 | 2 473.40 | 2.231 |
| D-DBPN[ | 23.20 | 766.40 | 0.682 |
| RCAN[ | 16.00 | 617.90 | 0.416 |
| DRN[ | 22.40 | 825.60 | 0.184 |
| 360-SS[ | 1.60 | 15.00 | 0.010 |
| LAU-Net[ | 9.40 | 342.80 | 0.352 |
| SPCR[ | 7.80 | 372.00 | 0.312 |
| OSRT[ | 12.10 | 423.70 | 0.842 |
| ICPSnet | 14.50 | 446.20 | 0.671 |
Tab.4 Complexity of different networks
| 网络 | 参数量/MB | GFLOPs | 运行时间/s |
|---|---|---|---|
| SRCNN[ | 8.13 | 6.75 | 0.158 |
| VDSR[ | 1.15 | 612.60 | 0.326 |
| LapSRN[ | 1.30 | 23.00 | 0.049 |
| MemNet[ | 2.30 | 45.00 | 0.085 |
| MSRN[ | 6.20 | 294.80 | 0.078 |
| EDSR[ | 45.50 | 2 473.40 | 2.231 |
| D-DBPN[ | 23.20 | 766.40 | 0.682 |
| RCAN[ | 16.00 | 617.90 | 0.416 |
| DRN[ | 22.40 | 825.60 | 0.184 |
| 360-SS[ | 1.60 | 15.00 | 0.010 |
| LAU-Net[ | 9.40 | 342.80 | 0.352 |
| SPCR[ | 7.80 | 372.00 | 0.312 |
| OSRT[ | 12.10 | 423.70 | 0.842 |
| ICPSnet | 14.50 | 446.20 | 0.671 |
| [1] | WANG J, SHI R, LI X, et al. Omnidirectional virtual visual acuity: a user-centric visual clarity metric for virtual reality head-mounted displays and environments[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(5): 2033-2043. |
| [2] | WANG X, WANG S, LI J, et al. Omnidirectional image super-resolution via position attention network[J]. Neural Networks, 2024, 178: No.106464. |
| [3] | AGRAHARI BANIYA A, LEE T K, EKLUND P W, et al. Omnidirectional video super-resolution using deep learning[J]. IEEE Transactions on Multimedia, 2024, 26: 540-554. |
| [4] | FAN Y, CHEN C. OmiQnet: multiscale feature aggregation convolutional neural network for omnidirectional image assessment[J]. Applied Intelligence, 2024, 54(7): 5711-5727. |
| [5] | DENG X, WANG H, XU M, et al. LAU-Net: latitude adaptive upscaling network for omnidirectional image super-resolution[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9185-9194. |
| [6] | YU F, WANG X, CAO M, et al. OSRT: omnidirectional image super-resolution with distortion-aware transformer[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 13283-13292. |
| [7] | DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. |
| [8] | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. |
| [9] | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843. |
| [10] | TAI Y, YANG J, LIU X, et al. MemNet: a persistent memory network for image restoration[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4549-4557. |
| [11] | LI J, FANG F, MEI K, et al. Multi-scale residual network for image super-resolution[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11212. Cham: Springer, 2018: 527-542. |
| [12] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. |
| [13] | HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1664-1673. |
| [14] | ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. |
| [15] | GUO Y, CHEN J, WANG J, et al. Closed-loop matters: dual regression networks for single image super-resolution[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5406-5415. |
| [16] | OZCINAR C, RANA A, SMOLIC A. Super-resolution of omnidirectional images using adversarial learning[C]// Proceedings of the IEEE 21st International Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2019: 1-6. |
| [17] | YOON Y, CHUNG I, WANG L, et al. SphereSR: 360° image super-resolution with arbitrary projection via continuous spherical image representation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5667-5676. |
| [18] | CHAI X, SHAO F, JIANG Q, et al. TCCL-Net: Transformer-convolution collaborative learning network for omnidirectional image super-resolution[J]. Knowledge-Based Systems, 2023, 274: No.110625. |
| [19] | QIAN L, LIU X, WU J, et al. 360-degree image super-resolution based on single image sample and progressive residual generative adversarial network[C]// Proceedings of the 7th International Conference on Image, Vision and Computing. Piscataway: IEEE, 2022: 654-661. |
| [20] | 刘子涵,周登文,刘玉铠. 基于全局依赖Transformer的图像超分辨率网络[J]. 计算机应用, 2024, 44(5): 1588-1596. |
| LIU Z H, ZHOU D W, LIU Y K. Image super-resolution network based on global dependency Transformer[J]. Journal of Computer Applications, 2024, 44(5): 1588-1596. | |
| [21] | 陈豪,夏振平,程成,等. 基于Transformer-CNN的轻量级图像超分辨率重建网络[J]. 计算机应用, 2024, 44(1): 292-299. |
| CHEN H, XIA Z P, CHENG C, et al. Lightweight image super-resolution reconstruction network based on Transformer-CNN[J]. Journal of Computer Applications, 2024, 44(1): 292-299. | |
| [22] | QIU Y, LIU Y, CHEN Y, et al. A2SPPNet: attentive atrous spatial pyramid pooling network for salient object detection[J]. IEEE Transactions on Multimedia, 2023, 25: 1991-2006. |
| [23] | SONG X, FANG X, MENG X, et al. Real-time semantic segmentation network with an enhanced backbone based on atrous spatial pyramid pooling module[J]. Engineering Applications of Artificial Intelligence, 2024, 133(Pt A): No.107988. |
| [24] | HU Y, HUANG Y, ZHANG K. Multi-scale information distillation network for efficient image super-resolution[J]. Knowledge-Based Systems, 2023, 275: No.110718. |
| [25] | SUN Y, LU A, YU L. Weighted-to-spherically-uniform quality evaluation for omnidirectional video[J]. IEEE Signal Processing Letters, 2017, 24(9): 1408-1412. |
| [26] | ZHOU Y, YU M, MA H, et al. Weighted-to-spherically-uniform SSIM objective quality evaluation for panoramic video[C]// Proceedings of the 14th IEEE International Conference on Signal Processing. Piscataway: IEEE, 2018: 54-57. |
| [27] | CAI Q, LI M, REN D, et al. Spherical pseudo-cylindrical representation for omnidirectional image super-resolution[C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 873-881. |
| [1] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [2] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [3] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [4] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [5] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [6] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [7] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [8] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
| [9] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
| [10] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
| [11] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
| [12] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
| [13] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
| [14] | Yuan SONG, Xin CHEN, Yarong LI, Yongwei LI, Yang LIU, Zhen ZHAO. Single-channel speech separation model based on auditory modulation Siamese network [J]. Journal of Computer Applications, 2025, 45(6): 2025-2033. |
| [15] | Weigang LI, Xinyi LI, Yongqiang WANG, Yuntao ZHAO. Point cloud classification and segmentation method based on adaptive dynamic graph convolution and parameter-free attention [J]. Journal of Computer Applications, 2025, 45(6): 1980-1986. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||