Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1205-1212.DOI: 10.11772/j.issn.1001-9081.2024030337
• Data science and technology • Previous Articles Next Articles
Received:
2024-03-27
Revised:
2024-05-12
Accepted:
2024-05-16
Online:
2024-07-05
Published:
2025-04-10
Contact:
Yancui SHI
About author:
WANG Cong, born in 1997, M. S. candidate,professor. Her research interests include deep learning, recommender system.
Supported by:
通讯作者:
史艳翠
作者简介:
王聪(1997—),女,陕西渭南人,硕士研究生,CCF会员,主要研究方向:深度学习、推荐系统
基金资助:
CLC Number:
Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning[J]. Journal of Computer Applications, 2025, 45(4): 1205-1212.
王聪, 史艳翠. 基于多视角学习的图神经网络群组推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1205-1212.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030337
数据集 | 群组数 | 用户数 | 项目数 | 群组 交互数 | 用户 交互数 | 平均度 | 稀疏度 |
---|---|---|---|---|---|---|---|
CAMRa2011 | 290 | 602 | 7 710 | 145 068 | 116 344 | 500.2 | 0.935 |
Mafengwo | 995 | 5 275 | 1 513 | 3 595 | 39 761 | 3.6 | 0.998 |
Weeplaces | 338 | 424 | 13 962 | 3 213 | 52 351 | 9.5 | 0.997 |
Tab. 1 Statistical information of pre-processed datasets
数据集 | 群组数 | 用户数 | 项目数 | 群组 交互数 | 用户 交互数 | 平均度 | 稀疏度 |
---|---|---|---|---|---|---|---|
CAMRa2011 | 290 | 602 | 7 710 | 145 068 | 116 344 | 500.2 | 0.935 |
Mafengwo | 995 | 5 275 | 1 513 | 3 595 | 39 761 | 3.6 | 0.998 |
Weeplaces | 338 | 424 | 13 962 | 3 213 | 52 351 | 9.5 | 0.997 |
模型 | Mafengwo | CAMRa2011 | Weeplaces | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@5 | HR@10 | NDCG@5 | NDCG@10 | HR@5 | HR@10 | NDCG@5 | NDCG@10 | HR@5 | HR@10 | NDCG@5 | NDCG@10 | |
S2-HHGR | 76.89 | 78.72 | 73.04 | 73.35 | 60.93 | 79.85 | 39.91 | 45.77 | 54.12 | 60.62 | 39.02 | 41.62 |
HCR | 76.68 | 83.92 | 66.44 | 68.81 | 60.22 | 81.03 | 40.57 | 44.68 | 53.24 | 59.82 | 38.41 | 40.60 |
ConsRec | 64.19 | 82.50 | 42.88 | |||||||||
GLIF | 79.61 | 87.63 | 70.30 | 71.63 | 59.18 | 78.93 | 40.30 | 46.73 | 52.64 | 58.65 | 37.70 | 39.68 |
CubeRec | 87.55 | 91.03 | 75.77 | 77.23 | 64.09 | 82.10 | 43.37 | 49.28 | 55.13 | 60.54 | 39.25 | 40.74 |
MGGCF | 75.26 | 77.80 | 68.47 | 69.02 | 61.30 | 81.17 | 41.60 | 46.13 | 53.03 | 59.56 | 36.89 | 39.02 |
HyperGroup | 56.81 | 64.90 | 46.52 | 48.01 | 57.79 | 80.20 | 38.14 | 44.90 | 43.54 | 52.42 | 33.12 | 34.88 |
GroupIM | 74.17 | 80.83 | 61.10 | 62.77 | 83.70 | 42.91 | 49.22 | 52.32 | 56.42 | 36.42 | 39.72 | |
GRGM | 91.75 | 93.86 | 81.38 | 82.12 | 66.03 | 50.11 | 56.53 | 62.42 | 41.29 | 42.98 |
Tab. 2 Comparison of performance of different models on two datasets
模型 | Mafengwo | CAMRa2011 | Weeplaces | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR@5 | HR@10 | NDCG@5 | NDCG@10 | HR@5 | HR@10 | NDCG@5 | NDCG@10 | HR@5 | HR@10 | NDCG@5 | NDCG@10 | |
S2-HHGR | 76.89 | 78.72 | 73.04 | 73.35 | 60.93 | 79.85 | 39.91 | 45.77 | 54.12 | 60.62 | 39.02 | 41.62 |
HCR | 76.68 | 83.92 | 66.44 | 68.81 | 60.22 | 81.03 | 40.57 | 44.68 | 53.24 | 59.82 | 38.41 | 40.60 |
ConsRec | 64.19 | 82.50 | 42.88 | |||||||||
GLIF | 79.61 | 87.63 | 70.30 | 71.63 | 59.18 | 78.93 | 40.30 | 46.73 | 52.64 | 58.65 | 37.70 | 39.68 |
CubeRec | 87.55 | 91.03 | 75.77 | 77.23 | 64.09 | 82.10 | 43.37 | 49.28 | 55.13 | 60.54 | 39.25 | 40.74 |
MGGCF | 75.26 | 77.80 | 68.47 | 69.02 | 61.30 | 81.17 | 41.60 | 46.13 | 53.03 | 59.56 | 36.89 | 39.02 |
HyperGroup | 56.81 | 64.90 | 46.52 | 48.01 | 57.79 | 80.20 | 38.14 | 44.90 | 43.54 | 52.42 | 33.12 | 34.88 |
GroupIM | 74.17 | 80.83 | 61.10 | 62.77 | 83.70 | 42.91 | 49.22 | 52.32 | 56.42 | 36.42 | 39.72 | |
GRGM | 91.75 | 93.86 | 81.38 | 82.12 | 66.03 | 50.11 | 56.53 | 62.42 | 41.29 | 42.98 |
模型 | HR@5 | HR@10 | NDCG@5 | NDCG@10 |
---|---|---|---|---|
V1 | 57.46 | 75.07 | 31.69 | 38.21 |
V2 | 86.59 | 91.54 | 71.98 | 70.37 |
V3 | 90.13 | 91.77 | 80.63 | 81.59 |
V4 | 84.32 | 89.04 | 72.87 | 74.22 |
V5 | ||||
GRGM | 91.75 | 93.86 | 81.38 | 82.12 |
Tab. 3 Ablation experimental results of GRGM models
模型 | HR@5 | HR@10 | NDCG@5 | NDCG@10 |
---|---|---|---|---|
V1 | 57.46 | 75.07 | 31.69 | 38.21 |
V2 | 86.59 | 91.54 | 71.98 | 70.37 |
V3 | 90.13 | 91.77 | 80.63 | 81.59 |
V4 | 84.32 | 89.04 | 72.87 | 74.22 |
V5 | ||||
GRGM | 91.75 | 93.86 | 81.38 | 82.12 |
1 | WU Y, WAYNE W H, YU’D L, et al. Group recommendation based on heterogeneous graph algorithm for EBSNs [J]. IEEE Access, 2023, 11: 1854-1866. |
2 | SATO R. Enumerating fair packages for group recommendations[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 870-878. |
3 | BALTRUNAS L, MAKCINSKAS T, RICCI F. Group recommendations with rank aggregation and collaborative filtering[C]// Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 119-126. |
4 | BORATTO L, CARTA S. State-of-the-art in group recommendation and new approaches for automatic identification of groups [M]// SORO A, VARGIU E, ARMANO G, et al. Information retrieval and mining in distributed environments, SCI 324. Berlin: Springer, 2010: 1-20. |
5 | FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3558-3565. |
6 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
7 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2023-11-19]. . |
8 | 许晓明,梅红岩,于恒,等. 基于偏好融合的群组推荐方法研究综述[J]. 小型微型计算机系统, 2020, 41(12):2500-2508. |
XU X M, MEI H Y, YU H, et al. Review of group recommendation methods based on preference fusion [J]. Journal of Chinese Computer Systems, 2020, 41(12): 2500-2508. | |
9 | BERRY S, FAZZIO S, ZHOU Y, et al. Netflix recommendations for groups [J]. Proceedings of the American Society for Information Science and Technology, 2010, 47(1): 1-3. |
10 | DU J, LI L, GU P, et al. A group recommendation approach based on neural network collaborative filtering [C]// Proceedings of the IEEE 35th International Conference on Data Engineering Workshops. Piscataway: IEEE, 2019: 148-154. |
11 | 李婷婷,楚俊峰,王燕燕. 基于隐式信任和群体共识的群体推荐方法[J]. 计算机应用, 2024, 44(2):460-468. |
LI T T, CHU J F, WANG Y Y. Group recommendation method based on implicit trust and group consensus [J]. Journal of Computer Applications, 2024, 44(2): 460-468. | |
12 | 孙男男,朴春慧,马新娜. 融合社交网络和分层自注意力的团购推荐算法[J]. 计算机工程与设计, 2023, 44(6):1867-1874. |
SUN N N, PIAO C H, MA X N. Group buying recommendation algorithm based on social network and hierarchical self attention mechanism [J]. Computer Engineering and Design, 2023, 44(6): 1867-1874. | |
13 | YU L, LENG Y, ZHANG D, et al. Collaborative group embedding and decision aggregation based on attentive influence of individual members: a group recommendation perspective [J]. Decision Support Systems, 2023, 165: No.113894. |
14 | 梅雨竹,胡竹林,朱欣娟. 融合双层注意力机制的群组偏好融合策略研究[J]. 计算机工程与应用, 2023, 59(9):272-279. |
MEI Y Z, HU Z L, ZHU X J. Research on group preference fusion strategy based on two-layer attention mechanism [J]. Computer Engineering and Applications, 2023, 59(9): 272-279. | |
15 | YE G, WU W, SHI L, et al. A personality-guided preference aggregator for ephemeral group recommendation [J]. Applied Soft Computing, 2024, 67(Pt A): No.112274. |
16 | GUO L, YIN H, WANG Q, et al. Group recommendation with latent voting mechanism [C]// Proceedings of the IEEE 36th International Conference on Data Engineering. Piscataway: IEEE, 2020: 121-132. |
17 | LI Y, CHEN T, ZHANG P F, et al. Self-supervised graph-based point-of-interest recommendation [EB/OL]. [2023-10-28].. |
18 | 党伟超,程炳阳,高改梅,等. 基于对比超图转换器的会话推荐[J]. 计算机应用, 2023, 43(12):3683-3688. |
DANG W C, CHENG B Y, GAO G M, et al. Contrastive hypergraph transformer for session-based recommendation [J]. Journal of Computer Applications, 2023, 43(12): 3683-3688. | |
19 | XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation [C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273. |
20 | LIAO G, DENG X, WAN C, et al. Group event recommendation based on graph multi-head attention network combining explicit and implicit information [J]. Information Processing and Management, 2022, 59(2): No.102797. |
21 | YIN H, WANG Q, ZHENG K, et al. Overcoming data sparsity in group recommendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(7): 3447-3460. |
22 | JI J, PEI J, LIN S, et al. Multi-granularity attention model for group recommendation [C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 3973-3977. |
23 | 王永贵,王芯茹. 融合自注意力和图卷积的多视图群组推荐[J]. 计算机工程与应用, 2024, 60(8):287-295. |
WANG Y G, WANG X R. Multi-view group recommendation integrating self-attention and graph convolution [J]. Computer Engineering and Applications, 2024, 60(8): 287-295. | |
24 | LENG Y, YU L. Incorporating global and local social networks for group recommendations [J]. Pattern Recognition, 2022, 127: No.108601. |
25 | JIANG B. Multi-graph group collaborative filtering [C]// Proceedings of the 2020 International Conference on Multimedia Retrieval. New York: ACM, 2020:555-562. |
26 | ZHANG S, ZHENG N, WANG D L. A novel attention-based global and local information fusion neural network for group recommendation [J]. Machine Intelligence Research, 2022, 19(4): 331-346. |
27 | CHEN T, YIN H, LONG J, et al. Thinking inside the box: learning hypercube representations for group recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1664-1673. |
28 | ZHANG J, GAO M, YU J, et al. Double-scale self-supervised hypergraph learning for group recommendation [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 2557-2567. |
29 | JIA R, ZHOU X, DONG L, et al. Hypergraph convolutional network for group recommendation [C]// Proceedings of the 2021 IEEE International Conference on Data Mining. Piscataway: IEEE, 2021: 260-269. |
30 | WU X, XIONG Y, ZHANG Y, et al. ConsRec: learning consensus behind interactions for group recommendation [C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 240-250. |
31 | GUO L, YIN H Z, CHEN T, et al. Hierarchical hyperedge embedding-based representation learning for group recommendation [J]. ACM Transactions on Information Systems, 2022, 40(1): No.3. |
32 | SANKAR A, WU Y, WU Y, et al. GroupIM: a mutual-information maximization framework for neural group recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1279-1288. |
33 | SHI C, HAN X, SONG L, et al. Deep collaborative filtering with multi-aspect information in heterogeneous networks [J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4): 1413-1425. |
34 | HE R, McAULEY J. Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering[C]// Proceedings of the 25th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2016: 507-517. |
[1] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[2] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[3] | Lan YOU, Yuang ZHANG, Yuan LIU, Zhijun CHEN, Wei WANG, Xing ZENG, Zhangwei HE. Developer recommendation for open-source projects based on collaborative contribution network [J]. Journal of Computer Applications, 2025, 45(4): 1213-1222. |
[4] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[5] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[6] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[7] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[8] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[9] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[10] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[11] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[12] | Tingting LI, Junfeng CHU, Yanyan WANG. Group recommendation method based on implicit trust and group consensus [J]. Journal of Computer Applications, 2024, 44(2): 460-468. |
[13] | Li ZENG, Jingru YANG, Gang HUANG, Xiang JING, Chaoran LUO. Survey on hypergraph application methods: issues, advances, and challenges [J]. Journal of Computer Applications, 2024, 44(11): 3315-3326. |
[14] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[15] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||