Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1213-1222.DOI: 10.11772/j.issn.1001-9081.2024040454
• Data science and technology • Previous Articles Next Articles
Lan YOU1,2, Yuang ZHANG1, Yuan LIU1,3, Zhijun CHEN1,2(
), Wei WANG4, Xing ZENG1,3, Zhangwei HE1
Received:2024-04-16
Revised:2024-11-06
Accepted:2024-11-07
Online:2025-04-08
Published:2025-04-10
Contact:
Zhijun CHEN
About author:YOU Lan, born in 1978, Ph. D., professor. Her research interests include open-source digital ecology, spatio-temporal big data, intelligent digital twin.Supported by:
游兰1,2, 张雨昂1, 刘源1,3, 陈智军1,2(
), 王伟4, 曾星1,3, 何张玮1
通讯作者:
陈智军
作者简介:游兰(1978—),女,湖北武汉人,教授,博士,CCF会员,主要研究方向:开源数字生态学、时空大数据、数智孪生;基金资助:CLC Number:
Lan YOU, Yuang ZHANG, Yuan LIU, Zhijun CHEN, Wei WANG, Xing ZENG, Zhangwei HE. Developer recommendation for open-source projects based on collaborative contribution network[J]. Journal of Computer Applications, 2025, 45(4): 1213-1222.
游兰, 张雨昂, 刘源, 陈智军, 王伟, 曾星, 何张玮. 基于协作贡献网络的开源项目开发者推荐[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1213-1222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040454
| 参数组合序号 | GNN维度 | Learning rate | Weight decay | Batch size |
|---|---|---|---|---|
| 1 | 128 | 0.001 | 1E-4 | 512 |
| 2 | 128 | 0.001 | 1E-4 | 1 024 |
| 3 | 128 | 0.001 | 5E-4 | 512 |
| 4 | 128 | 0.001 | 5E-4 | 1 024 |
| 5 | 128 | 0.010 | 1E-4 | 512 |
| 6 | 128 | 0.010 | 1E-4 | 1 024 |
| 7 | 256 | 0.001 | 1E-4 | 512 |
| 8 | 256 | 0.001 | 1E-4 | 1 024 |
| 9 | 256 | 0.001 | 5E-4 | 512 |
| 10 | 256 | 0.001 | 5E-4 | 1 024 |
| 11 | 256 | 0.010 | 1E-4 | 512 |
| 12 | 256 | 0.010 | 1E-4 | 1 024 |
Tab. 1 Detailed parameter setting for different combinations
| 参数组合序号 | GNN维度 | Learning rate | Weight decay | Batch size |
|---|---|---|---|---|
| 1 | 128 | 0.001 | 1E-4 | 512 |
| 2 | 128 | 0.001 | 1E-4 | 1 024 |
| 3 | 128 | 0.001 | 5E-4 | 512 |
| 4 | 128 | 0.001 | 5E-4 | 1 024 |
| 5 | 128 | 0.010 | 1E-4 | 512 |
| 6 | 128 | 0.010 | 1E-4 | 1 024 |
| 7 | 256 | 0.001 | 1E-4 | 512 |
| 8 | 256 | 0.001 | 1E-4 | 1 024 |
| 9 | 256 | 0.001 | 5E-4 | 512 |
| 10 | 256 | 0.001 | 5E-4 | 1 024 |
| 11 | 256 | 0.010 | 1E-4 | 512 |
| 12 | 256 | 0.010 | 1E-4 | 1 024 |
| 参数 | 值 | 参数 | 值 |
|---|---|---|---|
| 每层GNN非线性变换维度 | 256 | Batch size | 1 024 |
| Learning rate | 0.001 | Shuffle | True |
| Weight decay | 5E-4 | Drop last | False |
| Epochs | 50 |
Tab. 2 Experimental parameter setting
| 参数 | 值 | 参数 | 值 |
|---|---|---|---|
| 每层GNN非线性变换维度 | 256 | Batch size | 1 024 |
| Learning rate | 0.001 | Shuffle | True |
| Weight decay | 5E-4 | Drop last | False |
| Epochs | 50 |
| 推荐方法 | 精确率 | 召回率 | F1值 |
|---|---|---|---|
| w/o CCN | 49.78±3.24 | 53.45±2.36 | 51.66±3.12 |
| w/o GraphSAGE | 54.33±0.75 | 61.75±1.62 | 60.52±1.20 |
| w/o Link-Prediction | 59.61±1.52 | 65.20±2.03 | 63.28±1.95 |
| DRCCN | 62.29±1.87 | 71.30±1.35 | 66.41±1.72 |
Tab. 3 Comparison results of DRCCN ablation experiments
| 推荐方法 | 精确率 | 召回率 | F1值 |
|---|---|---|---|
| w/o CCN | 49.78±3.24 | 53.45±2.36 | 51.66±3.12 |
| w/o GraphSAGE | 54.33±0.75 | 61.75±1.62 | 60.52±1.20 |
| w/o Link-Prediction | 59.61±1.52 | 65.20±2.03 | 63.28±1.95 |
| DRCCN | 62.29±1.87 | 71.30±1.35 | 66.41±1.72 |
| 方法 | 精确率 | 召回率 | F1值 |
|---|---|---|---|
| DRCCN | 62.29±1.87 | 71.30±1.35 | 66.41±1.72 |
| CL4SRec | 56.27±1.72 | 69.51±1.81 | 63.74±1.10 |
| LightGCN | 55.40±0.46 | 69.25±0.92 | 61.51±1.30 |
| ConRec | 54.88±1.31 | 65.12±1.40 | 59.27±1.35 |
| GFCF | 53.16±0.49 | 64.28±0.70 | 57.85±0.93 |
| DRDPBG | 51.87±2.10 | 60.72±2.57 | 55.93±1.92 |
| S3Rec | 47.85±3.02 | 51.18±2.47 | 48.92±3.14 |
| DCF | 29.45±1.20 | 34.96±1.17 | 31.90±1.32 |
| SCF | 27.13±2.62 | 33.81±1.95 | 30.17±2.32 |
| DRCB | 38.37±1.89 | 45.92±1.23 | 41.85±0.92 |
Tab. 4 Comparison experimental results of different developer recommendation methods
| 方法 | 精确率 | 召回率 | F1值 |
|---|---|---|---|
| DRCCN | 62.29±1.87 | 71.30±1.35 | 66.41±1.72 |
| CL4SRec | 56.27±1.72 | 69.51±1.81 | 63.74±1.10 |
| LightGCN | 55.40±0.46 | 69.25±0.92 | 61.51±1.30 |
| ConRec | 54.88±1.31 | 65.12±1.40 | 59.27±1.35 |
| GFCF | 53.16±0.49 | 64.28±0.70 | 57.85±0.93 |
| DRDPBG | 51.87±2.10 | 60.72±2.57 | 55.93±1.92 |
| S3Rec | 47.85±3.02 | 51.18±2.47 | 48.92±3.14 |
| DCF | 29.45±1.20 | 34.96±1.17 | 31.90±1.32 |
| SCF | 27.13±2.62 | 33.81±1.95 | 30.17±2.32 |
| DRCB | 38.37±1.89 | 45.92±1.23 | 41.85±0.92 |
| 1 | FRANCO-BEDOYA O, AMELLER D, COSTAL D, et al. Open-source software ecosystems: a systematic mapping[J]. Information and Software Technology, 2017, 91: 160-185. |
| 2 | ZHAO J, WANG X, SHI C, et al. Heterogeneous graph structure learning for graph neural networks[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4697-4705. |
| 3 | LI Z, ZHAO Y, ZHANG Y, et al. Multi-relational graph attention networks for knowledge graph completion[J]. Knowledge-Based Systems, 2022, 251: No.109262. |
| 4 | ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 793-803. |
| 5 | XIA X, LO D, WANG X, et al. Accurate developer recommendation for bug resolution[C]// Proceedings of the 20th Working Conference on Reverse Engineering. Piscataway: IEEE, 2013: 72-81. |
| 6 | SUN X, YANG H, XIA X, et al. Enhancing developer recommendation with supplementary information via mining historical commits[J]. Journal of Systems and Software, 2017, 134: 355-368. |
| 7 | XIE X, ZHANG W, YANG Y, et al. DRETOM: developer recommendation based on topic models for bug resolution[C]// Proceedings of the 8th International Conference on Predictive Models in Software Engineering. New York: ACM, 2012: 19-28. |
| 8 | ZHANG T, LEE B. A hybrid bug triage algorithm for developer recommendation[C]// Proceedings of the 28th Annual ACM Symposium on Applied Computing. New York: ACM, 2013: 1088-1094. |
| 9 | 刘娇. 软件缺陷修复者推荐方法的研究[D]. 重庆:重庆邮电大学, 2018: 1-57. |
| LIU J. The research on the fixer recommendation method of software bugs[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2018:1-57. | |
| 10 | ZHANG Z, SUN H, ZHANG H. Developer recommendation for Topcoder through a meta-learning based policy model[J]. Empirical Software Engineering, 2020, 25(1): 859-889. |
| 11 | ZHU J, SHEN B, HU F. A learning to rank framework for developer recommendation in software crowdsourcing[C]// Proceedings of the 2015 Asia-Pacific Software Engineering Conference. Piscataway: IEEE, 2015: 285-292. |
| 12 | 于旭,何亚东,杜军威,等. 一种结合显式特征和隐式特征的开发者混合推荐算法[J]. 软件学报, 2022, 33(5): 1635-1651. |
| YU X, HE Y D, DU J W, et al. Developer hybrid recommendation algorithm based on combination of explicit features and implicit features[J]. Journal of Software, 2022, 33(5): 1635-1651. | |
| 13 | MAO T, YOSHIE O, FU J, et al. Seeing both sides: context-aware heterogeneous graph matching networks for extracting-related arguments[J]. Neural Computing and Applications, 2024, 36(9):4741-4762. |
| 14 | 刘海洋,马于涛. 一种针对软件缺陷自动分派的开发者推荐方法[J]. 小型微型计算机系统, 2017, 38(12): 2747-2753. |
| LIU H Y, MA Y T. Developer recommendation method for automatic software bug triage[J]. Journal of Chinese Computer Systems, 2017, 38(12):2747-2753. | |
| 15 | 刘晔晖,赵海燕,曹健,等. 开源社区中Issue解决过程的参与者推荐方法[J]. 小型微型计算机系统, 2020, 41(9): 1930-1934. |
| LIU Y H, ZHAO H Y, CAO J, et al. Participants recommendation approaches for Issue solving process in open source community[J]. Journal of Chinese Computer Systems, 2020, 41(9): 1930-1934. | |
| 16 | 李炜,吴群群,张以文. 基于E-CARGO模型的开发者推荐方法[J]. 计算机应用, 2022, 42(2): 557-564. |
| LI W, WU Q Q, ZHANG Y W. Developer recommendation method based on E-CARGO model[J]. Journal of Computer Applications, 2022, 42(2):557-564. | |
| 17 | YAN R, FAN Y, ZHANG J, et al. Service recommendation for composition creation based on collaborative attention convolutional network[C]// Proceedings of the 2021 IEEE International Conference on Web Services. Piscataway: IEEE, 2021: 397-405. |
| 18 | WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228. |
| 19 | TROUSSAS C, GIANNAKAS F, SGOUROPOULOU C, et al. Collaborative activities recommendation based on students’ collaborative learning styles using ANN and WSM[J]. Interactive Learning Environments, 2023, 31(1): 54-67. |
| 20 | 王旭东. 基于图理论的场景图检索方法研究与实现[D]. 西安:西安电子科技大学, 2021:1-61. |
| WANG X D. Research and implementation of scene graph retrieval method based on graph theory[D]. Xi’an: Xidian University, 2021:1-61. | |
| 21 | GAO C, WANG X, HE X, et al. Graph neural networks for recommender system[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 1623-1625. |
| 22 | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. |
| 23 | LIU Z, YANG L, FAN Z, et al. Federated social recommendation with graph neural network[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(4): No.55. |
| 24 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
| 25 | DUONG T T. An improvement of cluster-GCN with constraints[D]. Hanoi: FPT University, 2023:1-47. |
| 26 | YANG X, YAN M, PAN S, et al. Simple and efficient heterogeneous graph neural network[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 10816-10824. |
| 27 | YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 974-983. |
| 28 | XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation[C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273. |
| 29 | WANG Z, ZHAO H, SHI C. Profiling the design space for graph neural networks based collaborative filtering[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 1109-1119. |
| 30 | ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1893-1902. |
| 31 | WANG X, LIU N, HAN H, et al. Self-supervised heterogeneous graph neural network with co-contrastive learning[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1726-1736. |
| 32 | SHI C, JI H, LU Z, et al. Distance information improves heterogeneous graph neural networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(3): 1030-1043. |
| 33 | GUAN M, CAI X, SHANG J, et al. HMSG: heterogeneous graph neural network based on Metapath SubGraph learning[J]. Knowledge-Based Systems, 2023, 279: No.110930. |
| 34 | FU X, ZHANG J, MENG Z, et al. MaGNN: metapath aggregated graph neural network for heterogeneous graph embedding[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 2331-2341. |
| 35 | ALAOUI D EL, RIFFI J, SABRI A, et al. Deep GraphSAGE-based recommendation system: jumping knowledge connections with ordinal aggregation network[J]. Neural Computing and Applications, 2022, 34(14): 11679-11690. |
| 36 | 林海铭,田春岐,王伟. 基于二分网络表示学习的开源项目推荐方法[J]. 计算机科学与应用, 2022, 12(1): 54-62. |
| LIN H M, TIAN C Q, WANG W. Open source project recommendation method based on bipartite network representation learning[J]. Journal of Computer Science and Application, 2022, 12(1): 54-62. | |
| 37 | SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[M]// BRUSILOVSKY P, KOBSA A, NEJDL W. The adaptive web: methods and strategies of web personalization, LNCS 4321. Berlin: Springer, 2007: 291-324. |
| 38 | PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]// BRUSILOVSKY P, KOBSA A, NEJDL W. The adaptive web: methods and strategies of web personalization, LNCS 4321. Berlin: Springer, 2007: 325-341. |
| 39 | ZHANG X, WANG T, YIN G, et al. Who will be interested in? a contributor recommendation approach for open-source projects[EB/OL]. [2024-02-11].. |
| 40 | YU J, XIA X, CHEN T, et al. XSimGCL: towards extremely simple graph contrastive learning for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 913-926. |
| [1] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
| [2] | Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning [J]. Journal of Computer Applications, 2025, 45(4): 1205-1212. |
| [3] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
| [4] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
| [5] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
| [6] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
| [7] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
| [8] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
| [9] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
| [10] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
| [11] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
| [12] | Tao SUN, Zhangtian DUAN, Haonan ZHU, Peihao GUO, Heli SUN. Social event recommendation method based on unexpectedness metric [J]. Journal of Computer Applications, 2024, 44(3): 760-766. |
| [13] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
| [14] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
| [15] | Haodong ZHENG, Hua MA, Yingchao XIE, Wensheng TANG. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate [J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||