Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1632-1644.DOI: 10.11772/j.issn.1001-9081.2024030399
• Multimedia computing and computer simulation • Previous Articles
Daquan ZHANG1, Jiarui DONG1, Yang LEI1, Shikang LI1, Xiangyu SHI1, Zonghui LI1(), Yangdong DENG2, Weimin WU1
Received:
2024-05-09
Revised:
2024-10-02
Accepted:
2024-10-12
Online:
2024-11-22
Published:
2025-05-10
Contact:
Zonghui LI
About author:
ZHANG Daquan, born in 2000, M. S. candidate. His research interests include computer graphics rendering, machine learning.Supported by:
张大权1, 董家瑞1, 雷洋1, 李世康1, 石响宇1, 李宗辉1(), 邓仰东2, 吴为民1
通讯作者:
李宗辉
作者简介:
张大权(2000—),男,福建龙岩人,硕士研究生,主要研究方向:计算机图形学渲染、机器学习;基金资助:
CLC Number:
Daquan ZHANG, Jiarui DONG, Yang LEI, Shikang LI, Xiangyu SHI, Zonghui LI, Yangdong DENG, Weimin WU. Survey on hardware acceleration schemes for ray tracing[J]. Journal of Computer Applications, 2025, 45(5): 1632-1644.
张大权, 董家瑞, 雷洋, 李世康, 石响宇, 李宗辉, 邓仰东, 吴为民. 光线追踪硬件加速方案综述[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1632-1644.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030399
时间 | 光线追踪技术发展 | 硬件加速方案 |
---|---|---|
1968年[ | 光线追踪概念提出 | 无专用硬件加速,主要依赖CPU计算 |
1980年[ | Whitted 光线追踪 | 无专用硬件加速,主要依赖CPU计算 |
1984年[ | 分布式光线追踪 | 专用光线追踪硬件(如RTMs)开始出现,用于加速特定光线追踪任务 |
2000年[ | 全局光照算法 | GPU加速开始应用于光线追踪,主要在非实时应用中如电影制作 |
2018年[ | 实时光线追踪 | GPU加速显著提升,NVIDIA和AMD的高性能GPU被广泛应用于光线追踪任务中 |
2018—2022年[ | GPU融入光线追踪 专用计算单元 | NVIDIA RTX架构引入RT Core,实现实时光线追踪硬件加速。AMD RDNA 2架构推出, 支持硬件加速光线追踪。Intel Arc GPU系列引入硬件光线追踪支持及新的优化算法 |
2023年至今 | 光线追踪与AI结合 | 各大GPU厂商在新一代架构中整合AI加速器,用于优化光线追踪渲染和降低计算成本 |
Tab. 1 Ray tracing technology development and hardware acceleration schemes
时间 | 光线追踪技术发展 | 硬件加速方案 |
---|---|---|
1968年[ | 光线追踪概念提出 | 无专用硬件加速,主要依赖CPU计算 |
1980年[ | Whitted 光线追踪 | 无专用硬件加速,主要依赖CPU计算 |
1984年[ | 分布式光线追踪 | 专用光线追踪硬件(如RTMs)开始出现,用于加速特定光线追踪任务 |
2000年[ | 全局光照算法 | GPU加速开始应用于光线追踪,主要在非实时应用中如电影制作 |
2018年[ | 实时光线追踪 | GPU加速显著提升,NVIDIA和AMD的高性能GPU被广泛应用于光线追踪任务中 |
2018—2022年[ | GPU融入光线追踪 专用计算单元 | NVIDIA RTX架构引入RT Core,实现实时光线追踪硬件加速。AMD RDNA 2架构推出, 支持硬件加速光线追踪。Intel Arc GPU系列引入硬件光线追踪支持及新的优化算法 |
2023年至今 | 光线追踪与AI结合 | 各大GPU厂商在新一代架构中整合AI加速器,用于优化光线追踪渲染和降低计算成本 |
1 | AKENINE-MÖLLER T, HAINES E, HOFFMAN N. Real-time rendering[M]. 3rd ed. New York: A K Peters/CRC Press, 2008: 50-365. |
2 | WHITTED T. An improved illumination model for shaded display[C]// Proceedings of the 6th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1979: 14. |
3 | CHRISTENSEN P H, FONG J, LAUR D M, et al. Ray tracing for the movie “Cars”[C]// Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing. Piscataway: IEEE, 2006: 1-6. |
4 | DUTRE P, BALA K, BEKAERT P. Advanced global illumination[M]. 2nd ed. New York: A K Peters/ CRC Press, 2006:12-178. |
5 | PHARR M, JAKOB W, HUMPHREYS G. Physically based rendering: from theory to implementation[M]. 3rd ed. San Francisco: Morgan Kaufmann Publishers Inc., 2016:23-258. |
6 | APPEL A. Some techniques for shading machine renderings of solids[C]// Proceedings of the 1968 Spring Joint Computer Conference. New York: ACM, 1968: 37-45. |
7 | KAJIYA J T. The rendering equation[C]// Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1986: 143-150. |
8 | HAVRAN V. Heuristic ray shooting algorithms[D]. Prague: Czech Technical University, 2000: 1-10. |
9 | HAPALA M, HAVRAN V. Review: KD-Tree traversal algorithms for ray tracing[J]. Computer Graphics Forum, 2011, 30(1): 199-213. |
10 | CLARK J H. Hierarchical geometric models for visible surface algorithms[J]. Communications of the ACM, 1976, 19(10): 547-554. |
11 | FUCHS H, KEDEM Z M, NAYLOR B F. On visible surface generation by a priori tree structures[C]// Proceedings of the 7th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1980: 124-133. |
12 | MEISTER D, OGAKI S, BENTHIN C, et al. A survey on bounding volume hierarchies for ray tracing[J]. Computer Graphics Forum, 2021, 40(2): 683-712. |
13 | WALD I. On fast construction of SAH-based bounding volume hierarchies[C]// Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing. Piscataway: IEEE, 2007: 33-40. |
14 | GOLDSMITH J, SALMON J. Automatic creation of object hierarchies for ray tracing[J]. IEEE Computer Graphics and Applications, 1987, 7(5): 14-20. |
15 | MacDONALD J D, BOOTH K S. Heuristics for ray tracing using space subdivision[J]. The Visual Computer, 1990, 6(3): 153-166. |
16 | FABIANOWSKI B, FOWLER C, DINGLIANA J. A cost metric for Scene-Interior ray origins[C]// Proceedings of the 2009 Eurographics Conference (Short Papers). Goslar: Eurographics Association, 2009: 49-52. |
17 | LIANG X, YANG H, QIAN Y, et al. A fast KD-Tree construction for ray tracing based on efficient ray distribution[J]. Journal of Software, 2014, 9(3): 596-604. |
18 | AILA T, KARRAS T, LAINE S. On quality metrics of bounding volume hierarchies[C]// Proceedings of the 5th High-Performance Graphics Conference. New York: ACM, 2013: 101-107. |
19 | DAMMERTZ H, KELLER A. The edge volume heuristic — robust triangle subdivision for improved BVH performance[C]// Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing. Piscataway: IEEE, 2008: 155-158. |
20 | GANESTAM P, DOGGETT M. SAH guided spatial split partitioning for fast BVH construction[J]. Computer Graphics Forum, 2016, 35(2): 461-474. |
21 | LU Y, CHENG L, ISENBERG T, et al. Curve complexity heuristic KD-Trees for neighborhood-based exploration of 3D curves[J]. Computer Graphics Forum, 2021, 40(2): 461-474. |
22 | FELTMAN N, LEE M, FATAHALIAN K. SRDH: specializing BVH construction and traversal order using representative shadow ray sets[C]// Proceedings of the 4th ACM SIGGRAPH/Eurographics Conference on High-Performance Graphics. Goslar: Eurographics Association, 2012: 49-55. |
23 | IZE T, HANSEN C. RTSAH traversal order for occlusion rays[J]. Computer Graphics Forum, 2011, 30(2): 297-305. |
24 | JANSEN F W. Data structures for ray tracing[C]// Proceedings of the 1986 Data Structures for Raster Graphics, FOCUS COMPUTER. Berlin: Springer, 1986: 57-73. |
25 | ZHOU K, HOU Q, WANG R, et al. Real-time KD-Tree construction on graphics hardware[J]. ACM Transactions on Graphics, 2008, 27(5): 1-11. |
26 | SHEVTSOV M, SOUPIKOV A, KAPUSTIN A. Highly parallel fast KD-Tree construction for interactive ray tracing of dynamic scenes[J]. Computer Graphics Forum, 2007, 26(3): 395-404. |
27 | CHOI B, KOMURAVELLI R, LU V, et al. Parallel SAH K-D tree construction[C]// Proceedings of the 2010 ACM SIGGRAPH/Eurographics Conference on High Performance Graphics. Goslar: Eurographics Association, 2010: 77-86. |
28 | GU Y, HE Y, FATAHALIAN K, et al. Efficient BVH construction via approximate agglomerative clustering[C]// Proceedings of the 5th High-Performance Graphics Conference. New York: ACM, 2013: 81-88. |
29 | GUO X, ZHANG J, ZHOU M. Fast parallel bounding volume hierarchy construction[C]// Proceedings of the 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers. Piscataway: IEEE, 2020: 121-124. |
30 | MEISTER D, BITTNER J. Parallel locally-ordered clustering for bounding volume hierarchy construction[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(3): 1345-1353. |
31 | HU Y, WANG W, LI D, et al. Parallel BVH construction using locally density clustering[J]. IEEE Access, 2019, 7: 105827-105839. |
32 | STICH M, FRIEDRICH H, DIETRICH A. Spatial splits in bounding volume hierarchies[C]// Proceedings of the 1st Conference on High Performance Graphics. New York: ACM, 2009: 7-13. |
33 | KENSLER A. Tree rotations for improving bounding volume hierarchies[C]// Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing. Piscataway: IEEE, 2008: 73-76. |
34 | NG K, TRIFONOV B. Automatic bounding volume hierarchy generation using stochastic search methods[C]// Proceedings of the 2003 Mini Workshop “Stochastic Search Algorithms”. Vancouver, BC: University of British Columbia, 2003: 147-162. |
35 | BITTNER J, HAPALA M, HAVRAN V. Fast insertion-based optimization of bounding volume hierarchies[J]. Computer Graphics Forum, 2013, 32(1): 85-100. |
36 | FUETTERLING V, LOJEWSKI C, PFREUNDT F J, et al. Parallel spatial splits in bounding volume hierarchies[C]// Proceedings of the 2016 Eurographics Symposium on Parallel Graphics and Visualization. Goslar: Eurographics Association, 2016: 21-30. |
37 | CHOI B, CHANG B, IHM I. Improving memory space efficiency of KD-Tree for real-time ray tracing[J]. Computer Graphics Forum, 2013, 32(7): 335-344. |
38 | HORN D R, SUGERMAN J, HOUSTON M, et al. Interactive K-D Tree GPU ray tracing[C]// Proceedings of the 2007 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2007: 167-174. |
39 | POPOV S, GÜNTHER J, SEIDEL H P, et al. Stackless KD‐Tree traversal for high performance GPU ray tracing[J]. Computer Graphics Forum, 2007, 26(3): 415-424. |
40 | BINDER N, KELLER A. Efficient stackless hierarchy traversal on GPUs with backtracking in constant time[C]// Proceedings of the 8th ACM SIGGRAPH/Eurographics High Performance Graphics. Goslar: Eurographics Association, 2016: 41-50. |
41 | HUGHES D M, LIM I S. Kd-jump: a path-preserving stackless traversal for faster isosurface ray tracing on GPUs[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1555-1562. |
42 | LAINE S. Restart trail for stackless BVH traversal[C]// Proceedings of the 2nd ACM SIGGRAPH/Eurographics Conference on High Performance Graphics. Goslar: Eurographics Association, 2010: 107-111. |
43 | WALD I, SLUSALLEK P, BENTHIN C, et al. Interactive rendering with coherent ray tracing[J]. Computer Graphics Forum, 2001, 20(3): 153-165. |
44 | NAH J H, KWON H J, KIM D S, et al. RayCore: a ray-tracing hardware architecture for mobile devices[J]. ACM Transactions on Graphics, 2014, 33(5): No.162. |
45 | NVIDIA Corporation. NVIDIA Optix ray tracing engine[EB/OL]. [2024-03-22].. |
46 | Khronos Group Inc. Vulkan 1.4.306 — a specification[EB/OL]. [2024-04-10].. |
47 | Microsoft. DirectX graphics and gaming[EB/OL]. [2024-02-19].. |
48 | BITTERLI B, WYMAN C, PHARR M, et al. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting[J]. ACM Transactions on Graphics, 2020, 39(4): No.148. |
49 | SCHIED C, KAPLANYAN A, WYMAN C, et al. Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination[C]// Proceedings of the 9th ACM SIGGRAPH/Eurographics Symposium on High-Performance Graphics. New York: ACM, 2017: No.2. |
50 | SCHIED C, PETERS C, DACHSBACHER C. Gradient estimation for real-time adaptive temporal filtering[J]. Proceedings of the 2018 ACM on Computer Graphics and Interactive Techniques, 2018, 1(2): No.24. |
51 | NALBACH O, ARABADZHIYSKA E, MEHTA D, et al. Deep shading: convolutional neural networks for screen-space shading[J]. Computer Graphics Forum, 2017, 36(4): 65-78. |
52 | GAO D, MU H, XU K. Neural global illumination: interactive indirect illumination prediction under dynamic area lights[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(12): 5325-5341. |
53 | HERMOSILLA P, MAISCH S, RITSCHEL T, et al. Deep learning the latent space of light transport[J]. Computer Graphics Forum, 2019, 38(4): 207-217. |
54 | JIANG G, KAINZ B. Deep radiance caching: convolutional autoencoders deeper in ray tracing[J]. Computers and Graphics, 2021, 94: 22-31. |
55 | KALLWEIT S, MÜLLER T, McWILLIAMS B, GROSS M, et al. Deep scattering: rendering atmospheric clouds with radiance-predicting neural networks[J]. ACM Transactions on Graphics, 2017, 36(6): No.231. |
56 | KELLER A, DAHM K. Integral equations and machine learning[J]. Mathematics and Computers in Simulation, 2019, 161: 2-12. |
57 | MÜLLER T, ROUSSELLE F, KELLER A, et al. Neural control variates[J]. ACM Transactions on Graphics, 2020, 39(6): No.243. |
58 | MÜLLER T, McWILLIAMS B, ROUSSELLE F, et al. Neural importance sampling[J]. ACM Transactions on Graphics, 2019, 38(5): No.145. |
59 | REN P, WANG J, GONG M, et al. Global illumination with radiance regression functions[J]. ACM Transactions on Graphics, 2013, 32(4): No.130. |
60 | MÜLLER T, ROUSSELLE F, NOVÁK J, et al. Real-time neural radiance caching for path tracing[J]. ACM Transactions on Graphics, 2021, 40(4): No.36. |
61 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
62 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-04-17].. |
63 | NAH J H, KIM J W, PARK J, et al. HART: a hybrid architecture for ray tracing animated scenes[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(3): 389-401. |
64 | LIU X, DENG Y, NI Y, et al. FastTree: a hardware KD-Tree construction acceleration engine for real-time ray tracing[C]// Proceedings of the 2015 Design, Automation and Test in Europe Conference and Exhibition. Piscataway: IEEE, 2015: 1595-1598. |
65 | LI Z, WANG T, DENG Y. Fully parallel KD-Tree construction for real-time ray tracing[C]// Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2014: 159-159. |
66 | LEE W J, SHIN Y, LEE J, et al. A novel mobile GPU architecture based on ray tracing[C]// Proceedings of the 2013 IEEE International Conference on Consumer Electronics. Piscataway: IEEE, 2013: 21-22. |
67 | LEE W J, SHIN Y, LEE J, et al. SGRT: a mobile GPU architecture for real-time ray tracing[C]// Proceedings of the 5th High-Performance Graphics Conference. New York: ACM, 2013: 109-119. |
68 | LEE J, SHIN Y, LEE W J, et al. Real-time ray tracing on coarse-grained reconfigurable processor[C]// Proceedings of the 2013 International Conference on Field-Programmable Technology. Piscataway: IEEE, 2013: 192-197. |
69 | VIITANEN T, KOSKELA M, JÄÄSKELÄINEN P, et al. PLOCTree: a fast, high-quality hardware BVH builder[J]. Proceedings of the 2018 ACM on Computer Graphics and Interactive Techniques, 2018, 1(2): No.35. |
70 | VIITANEN T, KOSKELA M, JÄÄSKELÄINEN P, et al. MergeTree: a HLBVH constructor for mobile systems[C]// SIGGRAPH Asia 2015 Technical Briefs. New York: ACM, 2015: No.12. |
71 | VIITANEN T, KOSKELA M, JÄÄSKELÄINEN P, et al. MergeTree: a fast hardware HLBVH constructor for animated ray tracing[J]. ACM Transactions on Graphics, 2017, 36(5): No.169. |
72 | PANTALEONI J, LUEBKE D. HLBVH: hierarchical LBVH construction for real-time ray tracing of dynamic geometry[C]// Proceedings of the 2nd ACM SIGGRAPH/Eurographics Conference on High Performance Graphics. Goslar: Eurographics Association, 2010: 87-95. |
73 | SAMARDZIC N, QIAO W, AGGARWAL V, et al. Bonsai: high-performance adaptive merge tree sorting[C]// Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture. Piscataway: IEEE, 2020: 282-294. |
74 | LEE J, LEE W J, SHIN Y, et al. Two-AABB traversal for mobile real-time ray tracing[C]// SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications. New York: ACM, 2014: No.14. |
75 | DENG Y, NI Y, LI Z, et al. Toward real-time ray tracing: a survey on hardware acceleration and microarchitecture techniques[J]. ACM Computing Surveys, 2017, 50(4): No. 58. |
76 | KIM H Y, KIM Y J, KIM L S. MRTP: mobile ray tracing processor with reconfigurable stream multi-processors for high datapath utilization[J]. IEEE Journal of Solid-State Circuits, 2012, 47(2): 518-535. |
77 | KIM H Y, KIM Y J, OH J H, et al. A reconfigurable SIMT processor for mobile ray tracing with contention reduction in shared memory[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(4): 938-950. |
78 | HAMEED R, QADEER W, WACHS M, et al. Understanding sources of inefficiency in general-purpose chips[C]// Proceedings of the 37th Annual International Symposium on Computer Architecture. New York: ACM, 2010: 37-47. |
79 | IEEE. 754-2019 - IEEE standard for binary floating-point arithmetic[EB/OL]. [2024-03-09].. |
80 | HEINLY J, RECKER S, BENSEMA K, et al. Integer ray tracing[J]. Journal of Graphics, GPU, and Game Tools, 2009, 14(4): 31-56. |
81 | KEELY S. Reduced precision hardware for ray tracing[C]// Proceedings of the 6th ACM SIGGRAPH/Eurographics Symposium on High-Performance Graphics. Goslar: Eurographics Association, 2014: 29-40. |
82 | VAIDYANATHAN K, AKENINE-MÖLLER T, SALVI M. Watertight ray traversal with reduced precision[C]// Proceedings of the 8th ACM SIGGRAPH/Eurographics Symposium on High-Performance Graphics. Goslar: Eurographics Association, 2016:33-40. |
83 | LIKTOR G, VAIDYANATHAN K. Bandwidth-efficient BVH layout for incremental hardware traversal[C]// Proceedings of the 8th ACM SIGGRAPH/Eurographics Symposium on High-Performance Graphics. Goslar: Eurographics Association, 2016: 51-61. |
84 | RAJAN K, HASHEMI S, KARPUZCU U, et al. Dual-precision fixed-point arithmetic for low-power ray-triangle intersections[J]. Computers and Graphics, 2020, 87: 72-79. |
85 | FENDER J, ROSE J. A high-speed ray tracing engine built on a field-programmable system[C]// Proceedings of the 2003 IEEE International Conference on Field-Programmable Technology. Piscataway: IEEE, 2003: 188-195. |
86 | HANIKA J, KELLER A. Towards hardware ray tracing using fixed-point arithmetic[C]// Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing. Piscataway: IEEE, 2007: 119-128. |
87 | HWANG S J, LEE J, SHIN Y, et al. A mobile ray tracing engine with hybrid number representations[C]// SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications. New York: ACM, 2015: No.3. |
88 | LEE J, NAH J H, CHUNG W, et al. An implementation of multi-chip architecture for real-time ray tracing based on parallel frame rendering[J]. IEEE Access, 2021, 9: 118968-118976. |
89 | VASIOU E, SHKURKO K, BRUNVAND E, et al. Mach-RT: a many chip architecture for ray tracing[C]// Proceedings of the 11th ACM SIGGRAPH/Eurographics Symposium on High-Performance Graphics. Goslar: Eurographics Association, 2019: 1-6. |
90 | VASIOU E, SHKURKO K, BRUNVAND E, et al. Mach-RT: a many chip architecture for high performance ray tracing[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(3): 1585-1596. |
91 | SHKURKO K, GRANT T, KOPTA D, et al. Dual streaming for hardware-accelerated ray tracing[C]// Proceedings of the 9th ACM SIGGRAPH/Eurographics Symposium on High-Performance Graphics. New York: ACM, 2017: No.12. |
92 | LIN D, SHKURKO K, MALLETT I, et al. Dual-split trees[C]// Proceedings of the 2019 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2019: No.3. |
93 | LIN D, VASIOU E, YUKSEL C, et al. Hardware-accelerated dual-split trees[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2020, 3(2): No.20. |
94 | NVIDIA Corporation. NVIDIA Turing GPU architecture[EB/OL]. [2023-09-14].. |
95 | AILA T, KARRAS T. Architecture considerations for tracing incoherent rays[C]// Proceedings of the 2010 Conference on High Performance Graphics. Goslar: Eurographics Association, 2010: 113-122. |
96 | WHITTED T. An improved illumination model for shaded display[J]. Communications of the ACM, 1980, 23(6): 343-349. |
97 | COOK R L, PORTER T, CARPENTER L. Distributed ray tracing[J]. SIGGRAPH Computer Graphics, 1984, 18(3): 137-145. |
98 | JENSEN H W. Global illumination using photon maps[C]// Proceedings of the 1996 Eurographics Workshop on Rendering Techniques. Vienna: Springer, 1996: 21-30. |
99 | COOK R L, PORTER T, CARPENTER L. Distributed ray tracing[C]// Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1984, 18(3): 137-145. |
100 | NVIDIA Corporation. NVIDIA Turing GPU architecture[EB/OL]. [2023-08-14].. |
101 | Advanced Micro Devices, Inc. AMD RDNA2[EB/OL]. [2023-10-28].. |
102 | Corporation Intel. Intel Arc GPUs[EB/OL]. [2024-03-30].. |
103 | NVIDIA Corporation. NVIDIA Ada Lovelace architecture[EB/OL]. [2023-09-20] . |
104 | Technologies Imagination. What’s your level? the six levels of ray tracing acceleration[R/OL]. . |
105 | WILLIAMS A, BARRUS S, MORLEY R K, et al. An efficient and robust ray-box intersection algorithm[C]// ACM SIGGRAPH 2005 Courses. New York: ACM, 2005: No.9-es. |
106 | WALD I, MARK W R, GÜNTHER J, et al. State of the art in ray tracing animated scenes[J]. Computer Graphics Forum, 2009, 28(6): 1691-1722. |
107 | SPJUT J, KENSLER A, KOPTA D, et al. TRaX: a multicore hardware architecture for real-time ray tracing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(12): 1802-1815. |
108 | HAN M, WALD I, USHER W, et al. Ray tracing generalized tube primitives: method and applications[J]. Computer Graphics Forum, 2019, 38(3): 467-478. |
[1] | Jinxing TU, Zhixiong LI, Jianqiang HUANG. Dynamic partition algorithm for diagonal sparse matrix vector multiplication based on GPU [J]. Journal of Computer Applications, 2024, 44(11): 3521-3529. |
[2] | Jinhui LAI, Zichen XU, Yicheng TU, Guolong TAN. OmegaDB: concurrent computing framework of relational operators for heterogeneous architecture [J]. Journal of Computer Applications, 2023, 43(7): 2017-2025. |
[3] | Li LIU, Changbo CHEN. Band sparse matrix multiplication and efficient GPU implementation [J]. Journal of Computer Applications, 2023, 43(12): 3856-3867. |
[4] | Jingwen CAI, Yongzhuang WEI, Zhenghong LIU. GPU-based method for evaluating algebraic properties of cryptographic S-boxes [J]. Journal of Computer Applications, 2022, 42(9): 2750-2756. |
[5] | Fan PING, Xiaochun TANG, Yanyu PAN, Zhanhuai LI. Scheduling strategy of irregular tasks on graphics processing unit cluster [J]. Journal of Computer Applications, 2021, 41(11): 3295-3301. |
[6] | HUANG Yihang, JIANG Hong, HAN Bin. Ray tracking acceleration method based on combination of indoor dynamic and static divisions [J]. Journal of Computer Applications, 2020, 40(10): 3006-3012. |
[7] | HE Xi, WU Yantao, DI Zhenwei, CHEN Jia. GPU-based morphological reconstruction system [J]. Journal of Computer Applications, 2019, 39(7): 2008-2013. |
[8] | WU Xuchen, PIAO Chunhui, JIANG Xuehong. Siting model of electric taxi charging station based on GPU parallel computing [J]. Journal of Computer Applications, 2019, 39(10): 3071-3078. |
[9] | ZHANG Yunke, LIU Dan. Real-time implementation of improved TINY YOLO vehicle detection algorithm based on Zynq SoC hardware acceleration [J]. Journal of Computer Applications, 2019, 39(1): 192-198. |
[10] | FAN Hongwei, HU Yuxiang, LAN Julong. Two-stage hardware acceleration resource deployment mechanism for virtual network function [J]. Journal of Computer Applications, 2018, 38(9): 2575-2580. |
[11] | JI Lina, CHEN Qingkui, CHEN Yuanjing, ZHAO Deyu, FANG Yuling, ZHAO Yongtao. Real-time crowd counting method from video stream based on GPU [J]. Journal of Computer Applications, 2017, 37(1): 145-152. |
[12] | WU Xi, XU Qing, BU Hongjuan, WANG Zheng. Metropolis ray tracing based integrated filter [J]. Journal of Computer Applications, 2016, 36(9): 2605-2608. |
[13] | GUAN Yaqin, ZHAO Xuesheng, WANG Pengfei, LI Dapeng. Parallel algorithm for massive point cloud simplification based on slicing principle [J]. Journal of Computer Applications, 2016, 36(7): 1793-1796. |
[14] | ZHAO Mingchao, CHEN Zhibin, WEN Youwei. Parallel computation for image denoising via total variation dual model on GPU [J]. Journal of Computer Applications, 2016, 36(5): 1228-1231. |
[15] | MENG Xiangyang, LIN Qi. Hardware acceleration model of MD5 algorithm based on NetMagic platform [J]. Journal of Computer Applications, 2015, 35(4): 991-995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||