Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1954-1962.DOI: 10.11772/j.issn.1001-9081.2024050727
• Advanced computing • Previous Articles
Jianhua WANG1, Chuanyu WU1(
), Liping XU2
Received:2024-06-03
Revised:2024-07-30
Accepted:2024-08-08
Online:2024-08-20
Published:2025-06-10
Contact:
Chuanyu WU
About author:WANG Jianhua, born in 1977, Ph. D., associate professor. His research interests include intelligent scheduling optimization and operational simulation.Supported by:通讯作者:
吴传宇
作者简介:王建华(1977—),男,安徽庐州人,副教授,博士,主要研究方向:智能调度优化及运作仿真基金资助:CLC Number:
Jianhua WANG, Chuanyu WU, Liping XU. Enhanced evolutionary algorithm for multi-factor flexible job shop green scheduling[J]. Journal of Computer Applications, 2025, 45(6): 1954-1962.
王建华, 吴传宇, 许莉萍. 多因素柔性作业车间绿色调度的改进进化算法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1954-1962.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050727
| 符号 | 解释 | 符号 | 解释 |
|---|---|---|---|
| i,h | 工件索引 | k,w | 机器索引 |
| j,l | 工序索引 | q, | 机器加工速度索引 |
| 工件i的第j个工序 | 工件i的工序数 | ||
| n | 工件数 | m | 机器数 |
| 最大完工时间 | 工件i在机器k与w之间的运输时间 | ||
| 工序 | 机器k在以速度q加工 | ||
| 机器k在加工 | |||
| 机器k以速度q加工 | 机器k的空闲功率 | ||
| 机器k在以速度q加工 | 机器k加工功率 | ||
| 开关机总能耗 | 机器k在加工 | ||
| 机器设置总能耗 | 机器k关机时间阈值 | ||
| 辅助设备总能耗 | 机器k开机持续时间 | ||
| 机器空闲总能耗 | 机器k关机持续时间 | ||
| 机器加工总能耗 | 机器k开机的能耗 | ||
| 工件运输总能耗 | 机器k关机的能耗 | ||
| 工件运输功率 | |||
| 辅助设备功率 | 在机器k上, 不相邻为0 | ||
| 机器k可以在 |
Tab. 1 Symbols and explanations
| 符号 | 解释 | 符号 | 解释 |
|---|---|---|---|
| i,h | 工件索引 | k,w | 机器索引 |
| j,l | 工序索引 | q, | 机器加工速度索引 |
| 工件i的第j个工序 | 工件i的工序数 | ||
| n | 工件数 | m | 机器数 |
| 最大完工时间 | 工件i在机器k与w之间的运输时间 | ||
| 工序 | 机器k在以速度q加工 | ||
| 机器k在加工 | |||
| 机器k以速度q加工 | 机器k的空闲功率 | ||
| 机器k在以速度q加工 | 机器k加工功率 | ||
| 开关机总能耗 | 机器k在加工 | ||
| 机器设置总能耗 | 机器k关机时间阈值 | ||
| 辅助设备总能耗 | 机器k开机持续时间 | ||
| 机器空闲总能耗 | 机器k关机持续时间 | ||
| 机器加工总能耗 | 机器k开机的能耗 | ||
| 工件运输总能耗 | 机器k关机的能耗 | ||
| 工件运输功率 | |||
| 辅助设备功率 | 在机器k上, 不相邻为0 | ||
| 机器k可以在 |
迭代 次数 | 成功记忆 | 失败记忆 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| N1 | N2 | N3 | N4 | N5 | N1 | N2 | N3 | N4 | N5 | |
| 1 | ||||||||||
| 2 | ||||||||||
| LP | ||||||||||
Tab. 2 Success and failure memory table
迭代 次数 | 成功记忆 | 失败记忆 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| N1 | N2 | N3 | N4 | N5 | N1 | N2 | N3 | N4 | N5 | |
| 1 | ||||||||||
| 2 | ||||||||||
| LP | ||||||||||
| 实例 | 最大完工时间最小值 | 总能耗最低值 | ||||
|---|---|---|---|---|---|---|
| HJaya | NSGA-Ⅱ | EMoEA | HJaya | NSGA-Ⅱ | EMoEA | |
| MK01 | 77 | 76 | 78 | 156 459 | 148 806 | 145 799 |
| MK02 | 73 | 69 | 69 | 144 907 | 133 025 | 129 317 |
| MK03 | 293 | 245 | 243 | 439 621 | 437 112 | 427 446 |
| MK04 | 132 | 133 | 134 | 271 365 | 252 168 | 250 002 |
| MK05 | 300 | 292 | 290 | 287 710 | 276 772 | 274 657 |
| MK06 | 171 | 152 | 151 | 561 529 | 521 052 | 512 383 |
| MK07 | 498 | 412 | 408 | 476 690 | 496 564 | 485 735 |
| MK08 | 560 | 548 | 539 | 850 754 | 798 003 | 786 276 |
| MK09 | 547 | 520 | 509 | 822 862 | 794 960 | 794 008 |
| MK10 | 466 | 404 | 405 | 999 714 | 913 659 | 908 137 |
| MK11 | 1090 | 1034 | 1011 | 603 962 | 578 394 | 584 268 |
| MK12 | 758 | 707 | 681 | 769 961 | 710 623 | 687 939 |
| MK13 | 606 | 537 | 551 | 602 436 | 563 349 | 585 832 |
| MK14 | 702 | 685 | 653 | 984 809 | 944 220 | 922 213 |
| MK15 | 642 | 628 | 609 | 965 025 | 903 983 | 887 329 |
Tab. 3 Optimal objective values of three algorithms
| 实例 | 最大完工时间最小值 | 总能耗最低值 | ||||
|---|---|---|---|---|---|---|
| HJaya | NSGA-Ⅱ | EMoEA | HJaya | NSGA-Ⅱ | EMoEA | |
| MK01 | 77 | 76 | 78 | 156 459 | 148 806 | 145 799 |
| MK02 | 73 | 69 | 69 | 144 907 | 133 025 | 129 317 |
| MK03 | 293 | 245 | 243 | 439 621 | 437 112 | 427 446 |
| MK04 | 132 | 133 | 134 | 271 365 | 252 168 | 250 002 |
| MK05 | 300 | 292 | 290 | 287 710 | 276 772 | 274 657 |
| MK06 | 171 | 152 | 151 | 561 529 | 521 052 | 512 383 |
| MK07 | 498 | 412 | 408 | 476 690 | 496 564 | 485 735 |
| MK08 | 560 | 548 | 539 | 850 754 | 798 003 | 786 276 |
| MK09 | 547 | 520 | 509 | 822 862 | 794 960 | 794 008 |
| MK10 | 466 | 404 | 405 | 999 714 | 913 659 | 908 137 |
| MK11 | 1090 | 1034 | 1011 | 603 962 | 578 394 | 584 268 |
| MK12 | 758 | 707 | 681 | 769 961 | 710 623 | 687 939 |
| MK13 | 606 | 537 | 551 | 602 436 | 563 349 | 585 832 |
| MK14 | 702 | 685 | 653 | 984 809 | 944 220 | 922 213 |
| MK15 | 642 | 628 | 609 | 965 025 | 903 983 | 887 329 |
| 1 | PEZZELLA F, MORGANTI G, CIASCHETTIG. A genetic algorithm for the Flexible Job-Shop Scheduling Problem[J]. Computers and Operations Research, 2008, 35(10): 3202-3212. |
| 2 | LIU Z, WANG J, ZHANG C, et al. A hybrid genetic-particle swarm algorithm based on multilevel neighbourhood structure for flexible job shop scheduling problem [J]. Computers and Operations Research, 2021, 135: No.105431. |
| 3 | 孟冠军,黄江涛,魏亚博. 混合白鲸优化算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2024, 60(12):325-333. |
| MENG G J, HUANG J T, WEI Y B. Hybrid beluga whale optimization algorithm for flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2024, 60(12): 325-333. | |
| 4 | LI J Q, PAN Q K, LIANG Y C. An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems[J]. Computers and Industrial Engineering, 2010, 59(4): 647-662. |
| 5 | CALDEIRA R H, GNANAVELBABU A. A Pareto based discrete Jaya algorithm for multi-objective flexible job shop scheduling problem[J]. Expert Systems with Applications, 2021, 170: No.114567. |
| 6 | 王秋莲,段星皓. 基于高维多目标候鸟优化算法的柔性作业车间调度[J]. 中国机械工程, 2022, 33(21):2601-2612. |
| WANG Q L, DUAN X H. Scheduling of flexible job shop based on high-dimension and multi-objective migrating bird optimization algorithm[J]. China Mechanical Engineering, 2022, 33(21): 2601-2612. | |
| 7 | 胡晓阳,姚锡凡,黄鹏,等. 改进迭代局部搜索算法求解多AGV柔性作业车间调度问题[J]. 计算机集成制造系统, 2022, 28(7): 2198-2112. |
| HU X Y, YAO X F, HUANG P, et al. Improved iterative local search algorithm for solving multi-AGV flexible job shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2198-2112. | |
| 8 | 张国辉,胡一凡,孙靖贺. 改进遗传算法求解多时间约束的柔性作业车间调度问题[J]. 工业工程, 2020, 23(2): 19-25, 48. |
| ZHANG G H, HU Y F, SUN J H. An improved genetic algorithm for flexible job shop scheduling problem with multiple time constraints[J]. Industrial Engineering Journal, 2020, 23(2): 19-25, 48. | |
| 9 | LI J Q, DENG J W, LI C Y, et al. An improved Jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times[J]. Knowledge-Based Systems, 2020, 200: No.106032. |
| 10 | 李晓辉,资湖海,徐坷鑫,等. 带有充电约束的多AGV柔性作业车间调度[J/OL]. 计算机工程 [2024-07-11].. |
| LI X H, ZI H H, XU K X, et al. Multi-AGV flexible job shop scheduling with charging constraints[J/OL]. Computer Engineering [2024-07-11].. | |
| 11 | MOUZON G, YILDIRIM M B, TWOMEY J. Operational methods for minimization of energy consumption of manufacturing equipment[J]. International Journal of Production Research, 2007, 45(18/19): 4247-4271. |
| 12 | WU X, SUN Y. A green scheduling algorithm for flexible job shop with energy-saving measures[J]. Journal of Cleaner Production, 2018, 172: 3249-3264. |
| 13 | DUAN J, WANG J. Energy-efficient scheduling for a flexible job shop with machine breakdowns considering machine idle time arrangement and machine speed level selection[J]. Computers and Industrial Engineering, 2021, 161: No.107677. |
| 14 | WEI Z, LIAO W, ZHANG L. Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds[J]. Expert Systems with Applications, 2022, 197: No.116785. |
| 15 | 马训德,毕利,王俊杰. 基于离散冠状病毒群体免疫算法的多转速绿色柔性车间调度研究[J/OL]. 系统仿真学报 [2024-07-11].. |
| MA X D, BI L, WANG J J. Discrete coronavirus immunity optimizer algorithm for green flexible job shop scheduling with multi-speed machines[J/OL]. Journal of System Simulation [2024-07-11].. | |
| 16 | 王亚昆,刘应波,吴永明,等. 改进 NSGA-Ⅱ 算法求解考虑运输约束的柔性作业车间节能调度问题[J]. 计算机集成制造系统, 2023, 29(9): 3028-3034. |
| WANG Y K, LIU Y B, WU Y M, et al. Improved NSGA-Ⅱ algorithm to solve energy-saving scheduling problem of flexible job shop considering transportation constraints[J]. Computer Integrated Manufacturing Systems, 2023, 29(9): 3028-3034. | |
| 17 | 徐宜刚,陈勇,王宸,等. 改进NSGA-Ⅲ求解高维多目标绿色柔性作业车间调度问题[J]. 系统仿真学报, 2024, 36(10):2314-2329. |
| XU Y G, CHEN Y, WANG C, et al. Improving NSGA-Ⅲ algorithm for solving high-dimensional many-objective green flexible job shop scheduling problem[J]. Journal of System Simulation, 2024, 36(10):2314-2329. | |
| 18 | ZHANG G, GAO L, SHI Y. An effective genetic algorithm for the flexible job-shop scheduling problem[J]. Expert Systems with Applications, 2011, 38(4): 3563-3573. |
| 19 | GAO J, SUN L, GEN M. A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems[J]. Computers and Operations Research, 2008, 35(9): 2892-2907. |
| 20 | QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417. |
| 21 | BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(3): 157-183. |
| 22 | FAN J, SHEN W, GAO L, et al. A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths[J]. Journal of Manufacturing Systems, 2021, 60: 298-311. |
| [1] | . Survey of Federated Learning Based on Differential Privacy [J]. Journal of Computer Applications, 0, (): 0-0. |
| [2] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
| [3] | Longbo YAN, Wentao MAO, Zhihong ZHONG, Lilin FAN. Robust unsupervised multi-task anomaly detection method for defect diagnosis of urban drainage pipe network [J]. Journal of Computer Applications, 2025, 45(6): 1833-1840. |
| [4] | Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network [J]. Journal of Computer Applications, 2025, 45(6): 1776-1783. |
| [5] | Yulin HE, Xu LI, Yingting HE, Laizhong CUI, Zhexue HUANG. Subspace Gaussian mixture model clustering ensemble algorithm based on maximum mean discrepancy [J]. Journal of Computer Applications, 2025, 45(6): 1712-1723. |
| [6] | XIONG Qianlong, QIN Jin. Neural network architecture search algorithm guided by hybrid heuristic information [J]. Journal of Computer Applications, 0, (): 0-0. |
| [7] | JIANG Yongwei, CHEN Xiaoqing, FU Linjie. Medical image deformable registration model with high frequency holding based on spectrum decomposition [J]. Journal of Computer Applications, 0, (): 0-0. |
| [8] | . Regional electricity price forecasting method based on Mamba model [J]. Journal of Computer Applications, 0, (): 0-0. |
| [9] | . Improved Q-learning-based Algorithm for Safe Braking of Intelligent Vehicles in Multiple Scenarios [J]. Journal of Computer Applications, 0, (): 0-0. |
| [10] | FU Jincheng, YANG Shiyou. Short-term wind power prediction using hybrid model based on Bayesian optimization and feature fusion [J]. Journal of Computer Applications, 0, (): 0-0. |
| [11] | . Method for entity discovery for non-smart sensors by integrating knowledge graphs and large models [J]. Journal of Computer Applications, 0, (): 0-0. |
| [12] | Hansong ZHANG, Yichao HE, Fei SUN, Guoxin CHEN, Ju CHEN. Improved ring theory-based evolutionary algorithm with new repair optimization operator for solving multi-dimensional knapsack problem [J]. Journal of Computer Applications, 2025, 45(5): 1595-1604. |
| [13] | Biqing ZENG, Guangbin ZHONG, James Zhiqing WEN. Few-shot named entity recognition based on decomposed fuzzy span [J]. Journal of Computer Applications, 2025, 45(5): 1504-1510. |
| [14] | Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction [J]. Journal of Computer Applications, 2025, 45(5): 1472-1479. |
| [15] | Xin CHEN, Zhonghui LIU, Fan MIN. Concept set construction of reduced formal context and its recommendation application [J]. Journal of Computer Applications, 2025, 45(5): 1415-1423. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||