Journal of Computer Applications

    Next Articles

Short-term wind power prediction using hybrid model based on Bayesian optimization and feature fusion

FU Jincheng, YANG Shiyou   

  1. College of Electrical Engineering, Zhejiang University
  • Received:2025-03-25 Revised:2025-05-09 Online:2025-05-19 Published:2025-05-19
  • About author:FU Jincheng, born in 2002, M. S. candidate. His research interests include wind power prediction, intelligent optimization algorithms. YANG Shiyou, born in 1964, Ph. D., professor. His research interests include intelligent optimization algorithms, numerical analysis and optimal design of engineering electromagnetic fields.

基于贝叶斯优化和特征融合混合模型的短期风电功率预测

付锦程,杨仕友   

  1. 浙江大学 电气工程学院
  • 通讯作者: 付锦程
  • 作者简介:付锦程(2002—),男,河南开封人,硕士研究生,主要研究方向:风电功率预测、智能优化算法;杨仕友(1964—),男,辽宁朝阳人,教授,博士,主要研究方向:智能优化算法、工程电磁场的数值分析与优化设计。

Abstract: To enhance the accuracy of short-term wind power prediction, a extend Long Short-Term Memory (xLSTM)-Transformer model based on Bayesian Optimization (BO) and Feature Fusion (FF) was proposed. The proposed model integrates the temporal processing capability of Long Short-Term Memory (LSTM) network with the dynamic feature fusion ability of Transformer’s self-attention mechanism. By employing BO method, the hyperparameters of the model were efficiently optimized in a fewer iteration, significantly reducing the computational resource requirements. Experimental results show that, compared with single LSTM, Transformer model, Gated Recurrent Unit (GRU) model, and xLSTM-Transformer model without FF and BO, the proposed model performs better in key predictive indicators such as coefficient of determination R², Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

Key words: wind power prediction, neural network model, Bayesian Optimization (BO), feature fusion, deep learning

摘要: 为提高短期风电功率预测的准确性,提出一种基于贝叶斯优化(BO)和特征融合(FF)的xLSTM(extend Long Short-Term Memory)-Transformer模型。该模型综合应用了长短期记忆(LSTM)网络的时序处理能力和Transformer的自注意力机制的特征动态融合能力。借助BO方法,可在较少的迭代次数条件下优化模型的超参数,显著降低了模型对计算资源的依赖。实验结果表明,与单一的LSTM、Transformer模型、门控循环单元(GRU)模型以及未采用FF和BO的xLSTM-Transformer模型相比,所提模型的决定系数R²、平均绝对误差(MAE)和均方根误差(RMSE)等关键预测指标表现更优。

关键词: 风电功率预测, 神经网络模型, 贝叶斯优化, 特征融合, 深度学习

CLC Number: