Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1472-1479.DOI: 10.11772/j.issn.1001-9081.2024050636
• Artificial intelligence • Previous Articles
Quan WANG1,2(), Qixiang LU1, Pei SHI2
Received:
2024-05-17
Revised:
2024-08-01
Accepted:
2024-08-01
Online:
2024-08-20
Published:
2025-05-10
Contact:
Quan WANG
About author:
WANG Quan, born in 1980, Ph. D., professor of engineering. His research interests include internet of vehicles, industrial internet of things.Supported by:
通讯作者:
王泉
作者简介:
王泉(1980—),男,湖北咸宁人,正高级工程师,博士,主要研究方向:车联网、工业物联网基金资助:
CLC Number:
Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction[J]. Journal of Computer Applications, 2025, 45(5): 1472-1479.
王泉, 陆啟想, 施珮. 用于交通流量预测的多图扩散注意力网络[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1472-1479.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050636
数据集 | 节点数 | 步长 | 采样频率/min | 目标特征 |
---|---|---|---|---|
PEMS04 | 307 | 16 992 | 5 | 交通流量 |
PEMS08 | 170 | 17 856 | 5 | 交通流量 |
Tab.1 Dataset details
数据集 | 节点数 | 步长 | 采样频率/min | 目标特征 |
---|---|---|---|---|
PEMS04 | 307 | 16 992 | 5 | 交通流量 |
PEMS08 | 170 | 17 856 | 5 | 交通流量 |
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | DCRNN | 20.73 | 33.23 | 14.61 |
STGCN | 20.07 | 31.89 | 13.83 | |
Graph WaveNet | 19.52 | 30.87 | 14.57 | |
STSGCN | 21.65 | 34.01 | 14.50 | |
ASTGCN | 21.60 | 34.34 | 14.00 | |
GMAN | 19.79 | 31.58 | 14.63 | |
DDSTGCN | 19.61 | 31.05 | 13.70 | |
RGDAN | 19.25 | 32.19 | 13.12 | |
STID | 18.55 | 30.20 | 12.16 | |
ST_AE | 19.97 | 31.48 | 16.04 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | DCRNN | 16.56 | 25.79 | 12.53 |
STGCN | 16.07 | 27.83 | 11.40 | |
Graph WaveNet | 15.01 | 23.57 | 10.00 | |
STSGCN | 18.55 | 28.43 | 11.86 | |
ASTGCN | 18.41 | 28.47 | 11.00 | |
GMAN | 15.69 | 24.20 | 10.99 | |
DDSTGCN | 15.30 | 24.16 | 10.53 | |
RGDAN | 15.46 | 24.31 | 10.13 | |
STID | 14.29 | 23.59 | 9.25 | |
ST_AE | 16.70 | 25.94 | 12.04 | |
MGDAN | 13.47 | 23.13 | 8.82 |
Tab.2 Average performance comparison of different models on PEMS04 and PEMS08 datasets
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | DCRNN | 20.73 | 33.23 | 14.61 |
STGCN | 20.07 | 31.89 | 13.83 | |
Graph WaveNet | 19.52 | 30.87 | 14.57 | |
STSGCN | 21.65 | 34.01 | 14.50 | |
ASTGCN | 21.60 | 34.34 | 14.00 | |
GMAN | 19.79 | 31.58 | 14.63 | |
DDSTGCN | 19.61 | 31.05 | 13.70 | |
RGDAN | 19.25 | 32.19 | 13.12 | |
STID | 18.55 | 30.20 | 12.16 | |
ST_AE | 19.97 | 31.48 | 16.04 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | DCRNN | 16.56 | 25.79 | 12.53 |
STGCN | 16.07 | 27.83 | 11.40 | |
Graph WaveNet | 15.01 | 23.57 | 10.00 | |
STSGCN | 18.55 | 28.43 | 11.86 | |
ASTGCN | 18.41 | 28.47 | 11.00 | |
GMAN | 15.69 | 24.20 | 10.99 | |
DDSTGCN | 15.30 | 24.16 | 10.53 | |
RGDAN | 15.46 | 24.31 | 10.13 | |
STID | 14.29 | 23.59 | 9.25 | |
ST_AE | 16.70 | 25.94 | 12.04 | |
MGDAN | 13.47 | 23.13 | 8.82 |
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | w/o | 19.45 | 31.26 | 13.04 |
w/o | 18.71 | 30.82 | 12.34 | |
w/o TA | 18.98 | 30.52 | 12.65 | |
w/o SA | 18.78 | 30.97 | 12.15 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | w/o | 14.87 | 25.85 | 9.71 |
w/o | 13.97 | 23.45 | 9.35 | |
w/o TA | 14.23 | 24.86 | 9.58 | |
w/o SA | 14.11 | 23.41 | 9.50 | |
MGDAN | 13.47 | 23.13 | 8.82 |
Tab. 3 Results of ablation experiments
数据集 | 模型 | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | w/o | 19.45 | 31.26 | 13.04 |
w/o | 18.71 | 30.82 | 12.34 | |
w/o TA | 18.98 | 30.52 | 12.65 | |
w/o SA | 18.78 | 30.97 | 12.15 | |
MGDAN | 18.30 | 30.59 | 12.03 | |
PEMS08 | w/o | 14.87 | 25.85 | 9.71 |
w/o | 13.97 | 23.45 | 9.35 | |
w/o TA | 14.23 | 24.86 | 9.58 | |
w/o SA | 14.11 | 23.41 | 9.50 | |
MGDAN | 13.47 | 23.13 | 8.82 |
数据集 | H | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | 1 | 18.91 | 30.52 | 12.65 |
2 | 18.58 | 30.36 | 12.27 | |
4 | 18.30 | 30.59 | 12.03 | |
8 | 18.46 | 30.72 | 11.78 | |
16 | 18.71 | 30.29 | 12.38 | |
PEMS08 | 1 | 13.91 | 23.27 | 10.01 |
2 | 13.70 | 23.22 | 9.20 | |
4 | 13.47 | 23.13 | 8.82 | |
8 | 13.52 | 23.17 | 8.88 | |
16 | 13.89 | 23.51 | 9.14 |
Tab. 4 Influence of attention head number on model performance
数据集 | H | MAE | RMSE | MAPE/% |
---|---|---|---|---|
PEMS04 | 1 | 18.91 | 30.52 | 12.65 |
2 | 18.58 | 30.36 | 12.27 | |
4 | 18.30 | 30.59 | 12.03 | |
8 | 18.46 | 30.72 | 11.78 | |
16 | 18.71 | 30.29 | 12.38 | |
PEMS08 | 1 | 13.91 | 23.27 | 10.01 |
2 | 13.70 | 23.22 | 9.20 | |
4 | 13.47 | 23.13 | 8.82 | |
8 | 13.52 | 23.17 | 8.88 | |
16 | 13.89 | 23.51 | 9.14 |
模型 | 计算时间 | |
---|---|---|
每轮训练的时间/s | 推理时间/s | |
DCRNN | 121.3 | 12.5 |
GMAN | 210.6 | 14.7 |
DDSTGCN | 60.2 | 4.5 |
RGDAN | 122.3 | 4.8 |
MGDAN | 86.8 | 5.8 |
Tab. 5 Computing time on PEMS08 dataset
模型 | 计算时间 | |
---|---|---|
每轮训练的时间/s | 推理时间/s | |
DCRNN | 121.3 | 12.5 |
GMAN | 210.6 | 14.7 |
DDSTGCN | 60.2 | 4.5 |
RGDAN | 122.3 | 4.8 |
MGDAN | 86.8 | 5.8 |
1 | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. [2024-01-19]. . |
2 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2018: 3634-3640. |
3 | SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 914-921. |
4 | LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4189-4196. |
5 | NI Q, ZHANG M. STGMN: a gated multi-graph convolutional network framework for traffic flow prediction[J]. Applied Intelligence, 2022, 52(13): 15026-15039. |
6 | YU K, QIN X, JIA Z, et al. Cross-attention fusion based spatial-temporal multi-graph convolutional network for traffic flow prediction[J]. Sensors, 2021, 21(24): No.8468. |
7 | BAO Y, HUANG J, SHEN Q, et al. Spatial-temporal complex graph convolution network for traffic flow prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 121: No.106044. |
8 | HAN L, DU B, SUN L, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 547-555. |
9 | SUN Y, JIANG X, HU Y, et al. Dual dynamic spatial-temporal graph convolution network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23680-23693. |
10 | BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17804-17815. |
11 | 徐丽,符祥远,李浩然.基于门控卷积的时空交通流预测模型[J].计算机应用,2023,43(9):2760-2765. |
XU L, FU X Y, LI H R. Spatio-temporal traffic flow prediction model based on gated convolution[J]. Journal of Computer Applications, 2023, 43(9): 2760-2765. | |
12 | ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. |
13 | 顾焰杰,张英俊,刘晓倩,等.基于时空多图融合的交通流量预测[J].计算机应用,2024,44(8):2618-2625. |
GU Y J, ZHANG Y J, LIU X Q, et al. Traffic flow forecasting via spatio-temporal multi-graph fusion[J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | |
14 | CHEN L, SHI P, LI G, et al. Traffic flow prediction using multi-view graph convolution and masked attention mechanism[J]. Computer Communications, 2022, 194: 446-457. |
15 | WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2019: 1907-1913. |
16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
17 | LIU M, ZHU T, YE J, et al. Spatio-temporal AutoEncoder for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5516-5526. |
18 | SHAO Z, ZHANG Z, WANG F, et al. Spatial-temporal identity: a simple yet effective baseline for multivariate time series forecasting[C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 4454-4458. |
19 | ZHANG H, WANG H, CHEN L, et al. Traffic flow forecasting based on Transformer with diffusion graph attention network[J]. International Journal of Automotive Technology, 2024, 25(3):455-468. |
20 | SU J, JIN Z, REN J, et al. GDFormer: a graph diffusing attention based approach for traffic flow prediction[J]. Pattern Recognition Letters, 2022,156: 126-132. |
21 | ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 1234-1241. |
22 | FAN J, WENG W, TIAN H, et al. RGDAN: a random graph diffusion attention network for traffic prediction[J]. Neural Networks, 2024, 172: No.106093. |
23 | CHEN C, PETTY K, SKABARDONIS A, et al. Freeway performance measurement system: mining loop detector data[J]. Transportation Research Record, 2001, 1748(1): 96-102. |
24 | GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 922-929. |
[1] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
[2] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. |
[3] | Jiaxin LI, Site MO. Power work order classification in substation area based on MiniRBT-LSTM-GAT and label smoothing [J]. Journal of Computer Applications, 2025, 45(4): 1356-1362. |
[4] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[5] | Liang ZHU, Jingzhe MU, Hongqiang ZUO, Jingzhong GU, Fubao ZHU. Location privacy-preserving recommendation scheme based on federated graph neural network [J]. Journal of Computer Applications, 2025, 45(1): 136-143. |
[6] | Jianpeng HU, Lichen ZHANG. Deep spatio-temporal network model for multi-time step wind power prediction [J]. Journal of Computer Applications, 2025, 45(1): 98-105. |
[7] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[8] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[9] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[10] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[13] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[14] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. |
[15] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||