Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2712-2719.DOI: 10.11772/j.issn.1001-9081.2024071019
• Multimedia computing and computer simulation • Previous Articles
Jinhao LIN1, Chuan LUO1(), Tianrui LI2, Hongmei CHEN2
Received:
2024-07-19
Revised:
2024-11-05
Accepted:
2024-11-05
Online:
2024-12-03
Published:
2025-08-10
Contact:
Chuan LUO
About author:
LIN Jinhao, born in 1999, M. S. candidate. His research interests include deep learning, medical image processing.Supported by:
通讯作者:
罗川
作者简介:
林进浩(1999—),男,广东阳江人,硕士研究生,主要研究方向:深度学习、医学图像处理基金资助:
CLC Number:
Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network[J]. Journal of Computer Applications, 2025, 45(8): 2712-2719.
林进浩, 罗川, 李天瑞, 陈红梅. 基于跨尺度注意力网络的胸部疾病分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2712-2719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024071019
方法 | Atel | Card | Effu | Infi | Mass | Nodu | Pne1 | Pne2 | Cons | Edema | Emph | Fibr | PT | Hernia | 平均 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CheXNet[ | 0.769 | 0.885 | 0.825 | 0.694 | 0.824 | 0.759 | 0.715 | 0.852 | 0.745 | 0.842 | 0.906 | 0.821 | 0.766 | 0.901 | 0.807 |
SDFN[ | 0.781 | 0.885 | 0.832 | 0.700 | 0.815 | 0.765 | 0.719 | 0.866 | 0.743 | 0.842 | 0.921 | 0.835 | 0.791 | 0.911 | 0.815 |
CRAL[ | 0.781 | 0.880 | 0.829 | 0.702 | 0.834 | 0.773 | 0.729 | 0.857 | 0.754 | 0.850 | 0.908 | 0.830 | 0.778 | 0.917 | 0.816 |
CAN[ | 0.777 | 0.894 | 0.829 | 0.696 | 0.838 | 0.771 | 0.722 | 0.862 | 0.750 | 0.846 | 0.908 | 0.827 | 0.779 | 0.934 | 0.817 |
DualCheXNet[ | 0.784 | 0.888 | 0.831 | 0.705 | 0.838 | 0.796 | 0.727 | 0.876 | 0.746 | 0.852 | 0.942 | 0.837 | 0.796 | 0.912 | 0.823 |
LLAGnet[ | 0.783 | 0.885 | 0.834 | 0.703 | 0.841 | 0.790 | 0.729 | 0.877 | 0.754 | 0.851 | 0.939 | 0.832 | 0.798 | 0.916 | 0.824 |
A3Net[ | 0.779 | 0.895 | 0.836 | 0.710 | 0.834 | 0.777 | 0.737 | 0.878 | 0.759 | 0.855 | 0.933 | 0.838 | 0.791 | 0.938 | 0.826 |
CheXGCN[ | 0.786 | 0.893 | 0.832 | 0.699 | 0.840 | 0.800 | 0.739 | 0.876 | 0.751 | 0.850 | 0.944 | 0.834 | 0.795 | 0.929 | 0.826 |
CheXGAT[ | 0.787 | 0.879 | 0.837 | 0.699 | 0.839 | 0.793 | 0.741 | 0.879 | 0.755 | 0.851 | 0.945 | 0.842 | 0.794 | 0.931 | 0.827 |
SSGE[ | 0.792 | 0.892 | 0.840 | 0.714 | 0.848 | 0.812 | 0.733 | 0.885 | 0.753 | 0.848 | 0.948 | 0.827 | 0.795 | 0.932 | 0.830 |
本文方法 | 0.823 | 0.887 | 0.873 | 0.703 | 0.850 | 0.794 | 0.741 | 0.877 | 0.798 | 0.882 | 0.924 | 0.837 | 0.773 | 0.917 | 0.834 |
Tab. 1 AUC value comparison of different methods on ChestX-ray14 dataset
方法 | Atel | Card | Effu | Infi | Mass | Nodu | Pne1 | Pne2 | Cons | Edema | Emph | Fibr | PT | Hernia | 平均 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CheXNet[ | 0.769 | 0.885 | 0.825 | 0.694 | 0.824 | 0.759 | 0.715 | 0.852 | 0.745 | 0.842 | 0.906 | 0.821 | 0.766 | 0.901 | 0.807 |
SDFN[ | 0.781 | 0.885 | 0.832 | 0.700 | 0.815 | 0.765 | 0.719 | 0.866 | 0.743 | 0.842 | 0.921 | 0.835 | 0.791 | 0.911 | 0.815 |
CRAL[ | 0.781 | 0.880 | 0.829 | 0.702 | 0.834 | 0.773 | 0.729 | 0.857 | 0.754 | 0.850 | 0.908 | 0.830 | 0.778 | 0.917 | 0.816 |
CAN[ | 0.777 | 0.894 | 0.829 | 0.696 | 0.838 | 0.771 | 0.722 | 0.862 | 0.750 | 0.846 | 0.908 | 0.827 | 0.779 | 0.934 | 0.817 |
DualCheXNet[ | 0.784 | 0.888 | 0.831 | 0.705 | 0.838 | 0.796 | 0.727 | 0.876 | 0.746 | 0.852 | 0.942 | 0.837 | 0.796 | 0.912 | 0.823 |
LLAGnet[ | 0.783 | 0.885 | 0.834 | 0.703 | 0.841 | 0.790 | 0.729 | 0.877 | 0.754 | 0.851 | 0.939 | 0.832 | 0.798 | 0.916 | 0.824 |
A3Net[ | 0.779 | 0.895 | 0.836 | 0.710 | 0.834 | 0.777 | 0.737 | 0.878 | 0.759 | 0.855 | 0.933 | 0.838 | 0.791 | 0.938 | 0.826 |
CheXGCN[ | 0.786 | 0.893 | 0.832 | 0.699 | 0.840 | 0.800 | 0.739 | 0.876 | 0.751 | 0.850 | 0.944 | 0.834 | 0.795 | 0.929 | 0.826 |
CheXGAT[ | 0.787 | 0.879 | 0.837 | 0.699 | 0.839 | 0.793 | 0.741 | 0.879 | 0.755 | 0.851 | 0.945 | 0.842 | 0.794 | 0.931 | 0.827 |
SSGE[ | 0.792 | 0.892 | 0.840 | 0.714 | 0.848 | 0.812 | 0.733 | 0.885 | 0.753 | 0.848 | 0.948 | 0.827 | 0.795 | 0.932 | 0.830 |
本文方法 | 0.823 | 0.887 | 0.873 | 0.703 | 0.850 | 0.794 | 0.741 | 0.877 | 0.798 | 0.882 | 0.924 | 0.837 | 0.773 | 0.917 | 0.834 |
方法 | Cons_1 | Cons_2 | Cons_3 | Cons_4 | ILD | Emph | Atel | AB | Bron | Pne2 | Effu | 平均 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CheXNet[ | 0.698 | 0.640 | 0.687 | 0.821 | 0.894 | 0.815 | 0.866 | 0.884 | 0.821 | 0.716 | 0.907 | 0.795 |
CRAL[ | 0.681 | 0.664 | 0.697 | 0.823 | 0.897 | 0.805 | 0.816 | 0.864 | 0.882 | 0.768 | 0.888 | 0.799 |
CAN[ | 0.708 | 0.677 | 0.686 | 0.838 | 0.943 | 0.806 | 0.876 | 0.869 | 0.827 | 0.754 | 0.926 | 0.810 |
DualCheXNet[ | 0.730 | 0.701 | 0.691 | 0.853 | 0.931 | 0.833 | 0.882 | 0.872 | 0.864 | 0.761 | 0.928 | 0.822 |
A3Net[ | 0.679 | 0.675 | 0.709 | 0.857 | 0.883 | 0.794 | 0.888 | 0.889 | 0.896 | 0.769 | 0.924 | 0.815 |
CheXGCN[ | 0.713 | 0.685 | 0.693 | 0.861 | 0.941 | 0.793 | 0.884 | 0.887 | 0.879 | 0.752 | 0.938 | 0.821 |
CheXGAT[ | 0.709 | 0.669 | 0.711 | 0.859 | 0.906 | 0.790 | 0.909 | 0.885 | 0.913 | 0.773 | 0.948 | 0.825 |
本文方法 | 0.697 | 0.693 | 0.714 | 0.850 | 0.923 | 0.815 | 0.911 | 0.881 | 0.887 | 0.774 | 0.940 | 0.826 |
Tab. 2 AUC value comparison of different methods on DR-Pneumonia dataset
方法 | Cons_1 | Cons_2 | Cons_3 | Cons_4 | ILD | Emph | Atel | AB | Bron | Pne2 | Effu | 平均 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CheXNet[ | 0.698 | 0.640 | 0.687 | 0.821 | 0.894 | 0.815 | 0.866 | 0.884 | 0.821 | 0.716 | 0.907 | 0.795 |
CRAL[ | 0.681 | 0.664 | 0.697 | 0.823 | 0.897 | 0.805 | 0.816 | 0.864 | 0.882 | 0.768 | 0.888 | 0.799 |
CAN[ | 0.708 | 0.677 | 0.686 | 0.838 | 0.943 | 0.806 | 0.876 | 0.869 | 0.827 | 0.754 | 0.926 | 0.810 |
DualCheXNet[ | 0.730 | 0.701 | 0.691 | 0.853 | 0.931 | 0.833 | 0.882 | 0.872 | 0.864 | 0.761 | 0.928 | 0.822 |
A3Net[ | 0.679 | 0.675 | 0.709 | 0.857 | 0.883 | 0.794 | 0.888 | 0.889 | 0.896 | 0.769 | 0.924 | 0.815 |
CheXGCN[ | 0.713 | 0.685 | 0.693 | 0.861 | 0.941 | 0.793 | 0.884 | 0.887 | 0.879 | 0.752 | 0.938 | 0.821 |
CheXGAT[ | 0.709 | 0.669 | 0.711 | 0.859 | 0.906 | 0.790 | 0.909 | 0.885 | 0.913 | 0.773 | 0.948 | 0.825 |
本文方法 | 0.697 | 0.693 | 0.714 | 0.850 | 0.923 | 0.815 | 0.911 | 0.881 | 0.887 | 0.774 | 0.940 | 0.826 |
模型 | 平均AUC | |
---|---|---|
ChestX-ray14 | DR-Pneumonia | |
Model-1 | 0.825 | 0.821 |
Model-2 | 0.828 | 0.819 |
Model-3 | 0.832 | 0.822 |
本文方法 | 0.834 | 0.826 |
Tab. 3 Results of ablation experiments
模型 | 平均AUC | |
---|---|---|
ChestX-ray14 | DR-Pneumonia | |
Model-1 | 0.825 | 0.821 |
Model-2 | 0.828 | 0.819 |
Model-3 | 0.832 | 0.822 |
本文方法 | 0.834 | 0.826 |
池化策略 | 不同数据集上的平均AUC | |
---|---|---|
ChestX-ray14 | DR-Pneumonia | |
GAP | 0.822 | 0.818 |
SPP | 0.830 | 0.824 |
SAPP | 0.834 | 0.826 |
Tab. 4 Influence of different pooling strategies on model classification performance
池化策略 | 不同数据集上的平均AUC | |
---|---|---|
ChestX-ray14 | DR-Pneumonia | |
GAP | 0.822 | 0.818 |
SPP | 0.830 | 0.824 |
SAPP | 0.834 | 0.826 |
损失函数 | 不同数据集上的平均AUC | |
---|---|---|
ChestX-ray14 | DR-Pneumonia | |
交叉熵损失函数 | 0.821 | 0.814 |
焦点损失函数 | 0.827 | 0.817 |
非对称损失函数 | 0.834 | 0.826 |
Tab. 5 Influence of different loss functions on model classification performance
损失函数 | 不同数据集上的平均AUC | |
---|---|---|
ChestX-ray14 | DR-Pneumonia | |
交叉熵损失函数 | 0.821 | 0.814 |
焦点损失函数 | 0.827 | 0.817 |
非对称损失函数 | 0.834 | 0.826 |
[1] | MA X, ZHU L, KURCHE J S, et al. Global and regional burden of interstitial lung disease and pulmonary sarcoidosis from 1990 to 2019: results from the Global Burden of Disease study 2019[J]. Thorax, 2022, 77(6): 596-605. |
[2] | BRUNO M A, WALKER E A, ABUJUDEH H H. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction[J]. RadioGraphics, 2015, 35(6): 1668-1676. |
[3] | WANG X, PENG Y, LU L, et al. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3462-3471. |
[4] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
[5] | HUYNH L D, BOUTRY N. A U-net++ with pre-trained EfficientNet backbone for segmentation of diseases and artifacts in endoscopy images and videos[EB/OL].[2024-10-11]. . |
[6] | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. |
[7] | RAJPURKAR P, IRVIN J, ZHU K, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning[EB/OL]. [2024-05-23].. |
[8] | KARADDI S H, SHARMA L D. Automated multi-class classification of lung diseases from CXR-images using pre-trained convolutional neural networks[J]. Expert Systems with Applications, 2023, 211: No.118650. |
[9] | CHEN B, LI J, LU G, et al. Lesion location attention guided network for multi-label thoracic disease classification in chest X-rays[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(7): 2016-2027. |
[10] | 宋子岩,罗川,李天瑞,等. 基于注意力机制和双分支网络的胸部疾病分类[J]. 计算机科学, 2024, 51(11A): No.230900116. |
SONG Z Y, LUO C, LI T R, et al. Classification of thoracic diseases based on attention mechanisms and two-branch networks[J]. Computer Science, 2024, 51(11A): No.230900116. | |
[11] | CHEN B, LI J, LU G, et al. Label co-occurrence learning with graph convolutional networks for multi-label chest X-ray image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(8): 2292-2302. |
[12] | INDUMATHI V, SIVA R. An efficient lung disease classification from X-ray images using hybrid Mask-RCNN and BiDLSTM[J]. Biomedical Signal Processing and Control, 2023, 81: No.104340. |
[13] | WANG H, WANG S, QIN Z, et al. Triple attention learning for classification of 14 thoracic diseases using chest radiography[J]. Medical Image Analysis, 2021, 67: No.101846. |
[14] | CHEN B, LI J, GUO X, et al. DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays[J]. Biomedical Signal Processing and Control, 2019, 53: No.101554. |
[15] | LIU H, WANG L, NAN Y, et al. SDFN: segmentation-based deep fusion network for thoracic disease classification in chest X-ray images[J]. Computerized Medical Imaging and Graphics, 2019, 75: 66-73. |
[16] | FAISAL M, DARMAWAN J T, BACHROIN N, et al. CheXViT: CheXNet and Vision Transformer to multi-label chest X-ray image classification[C]// Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications. Piscataway: IEEE, 2023: 1-6. |
[17] | WANG H, JIA H, LU L, et al. Thorax-Net: an attention regularized deep neural network for classification of thoracic diseases on chest radiography[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 475-485. |
[18] | XU Y, LAM H K, JIA G. MANet: a two-stage deep learning method for classification of COVID-19 from chest X-ray images[J]. Neurocomputing, 2021, 443: 96-105. |
[19] | MA C, WANG H, HOI S C H. Multi-label thoracic disease image classification with cross-attention networks[C]// Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11769. Cham: Springer, 2019: 730-738. |
[20] | SUN Z, QU L, LUO J, et al. Label correlation transformer for automated chest X-ray diagnosis with reliable interpretability[J]. La Radiologia Medica, 2023, 128(6): 726-733. |
[21] | GUAN Q, HUANG Y. Multi-label chest X-ray image classification via category-wise residual attention learning[J]. Pattern Recognition Letters, 2020, 130: 259-266. |
[22] | CHEN B, ZHANG Z, LI Y, et al. Multi-label chest X-ray image classification via semantic similarity graph embedding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2455-2468. |
[23] | LEE Y W, HUANG S K, CHANG R F. CheXGAT: a disease correlation-aware network for thorax disease diagnosis from chest X-ray images[J]. Artificial Intelligence in Medicine, 2022, 132: No.102382. |
[24] | WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. |
[25] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
[26] | RIDNIK T, BEN-BARUCH E, ZAMIR N, et al. Asymmetric loss for multi-label classification[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 82-91. |
[27] | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
[28] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
[29] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |
[1] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
[2] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
[3] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
[4] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
[5] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
[6] | Yimeng XI, Zhen DENG, Qian LIU, Libo LIU. Cross-modal information fusion for video-text retrieval [J]. Journal of Computer Applications, 2025, 45(8): 2448-2456. |
[7] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[8] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
[9] | Yingjun ZHANG, Weiwei YAN, Binhong XIE, Rui ZHANG, Wangdong LU. Gradient-discriminative and feature norm-driven open-world object detection [J]. Journal of Computer Applications, 2025, 45(7): 2203-2210. |
[10] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
[11] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
[12] | Yongpeng TAO, Shiqi BAI, Zhengwen ZHOU. Neural architecture search for multi-tissue segmentation using convolutional and transformer-based networks in glioma segmentation [J]. Journal of Computer Applications, 2025, 45(7): 2378-2386. |
[13] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[14] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
[15] | Zonghang WU, Dong ZHANG, Guanyu LI. Multimodal fusion recommendation algorithm based on joint self-supervised learning [J]. Journal of Computer Applications, 2025, 45(6): 1858-1868. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||