Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1858-1868.DOI: 10.11772/j.issn.1001-9081.2024060824
• Data science and technology • Previous Articles Next Articles
Zonghang WU, Dong ZHANG, Guanyu LI()
Received:
2024-06-20
Revised:
2024-09-18
Accepted:
2024-09-19
Online:
2024-10-11
Published:
2025-06-10
Contact:
Guanyu LI
About author:
WU Zonghang, born in 2002, M. S. candidate. His research interests include recommender system, intelligent information processing.Supported by:
通讯作者:
李冠宇
作者简介:
吴宗航(2002—),男,吉林公主岭人,硕士研究生,CCF会员,主要研究方向:推荐系统、智能信息处理基金资助:
CLC Number:
Zonghang WU, Dong ZHANG, Guanyu LI. Multimodal fusion recommendation algorithm based on joint self-supervised learning[J]. Journal of Computer Applications, 2025, 45(6): 1858-1868.
吴宗航, 张东, 李冠宇. 基于联合自监督学习的多模态融合推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1858-1868.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060824
数据集 | 用户数 | 项目数 | 交互数 |
---|---|---|---|
TikTok | 9 308 | 6 710 | 68 722 |
Baby | 19 445 | 7 050 | 160 792 |
Sports | 35 598 | 18 357 | 296 337 |
Tab. 1 Experimental dataset statistics
数据集 | 用户数 | 项目数 | 交互数 |
---|---|---|---|
TikTok | 9 308 | 6 710 | 68 722 |
Baby | 19 445 | 7 050 | 160 792 |
Sports | 35 598 | 18 357 | 296 337 |
算法 | TikTok | Baby | Sports | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | |
最优较次优提升/% | 5.49 | 1.17 | 4.69 | 0.81 | 2.56 | 1.98 | 2.74 | 1.59 | 2.99 | 3.52 | 1.22 | 3.11 |
SelfCF | 0.058 6 | 0.029 2 | 0.005 9 | 0.020 3 | 0.052 1 | 0.027 9 | 0.005 8 | 0.019 9 | 0.063 0 | 0.034 4 | 0.007 0 | 0.024 8 |
LayerGCN | 0.059 4 | 0.033 9 | 0.005 9 | 0.026 3 | 0.051 8 | 0.027 7 | 0.005 8 | 0.019 6 | 0.061 6 | 0.033 6 | 0.006 9 | 0.024 1 |
MMGCN | 0.055 2 | 0.029 7 | 0.005 5 | 0.022 0 | 0.042 0 | 0.021 8 | 0.004 7 | 0.015 1 | 0.038 8 | 0.020 6 | 0.004 4 | 0.014 4 |
GRCN | 0.048 8 | 0.023 1 | 0.004 9 | 0.015 4 | 0.052 8 | 0.028 2 | 0.005 9 | 0.020 0 | 0.057 3 | 0.030 9 | 0.006 4 | 0.022 0 |
MGCN | 0.061 9 | 0.032 5 | 0.006 2 | 0.023 6 | 0.061 3 | 0.032 9 | 0.006 8 | 0.023 5 | 0.073 3 | 0.040 2 | 0.008 1 | 0.029 2 |
LATTICE | 0.057 8 | 0.030 8 | 0.005 8 | 0.022 6 | 0.054 9 | 0.029 1 | 0.006 1 | 0.020 5 | 0.062 2 | 0.034 1 | 0.006 9 | 0.024 7 |
FREEDOM | 0.053 7 | 0.031 6 | 0.006 4 | 0.024 5 | 0.062 8 | 0.032 9 | 0.006 8 | 0.022 7 | 0.071 3 | 0.038 2 | 0.007 9 | 0.027 2 |
DRAGON | 0.062 0 | 0.032 8 | 0.006 2 | 0.023 9 | 0.065 6 | 0.034 6 | 0.007 2 | 0.024 4 | 0.072 6 | 0.039 6 | ||
BM3 | 0.061 7 | 0.032 2 | 0.006 2 | 0.023 4 | 0.055 1 | 0.029 0 | 0.006 2 | 0.022 4 | 0.063 5 | 0.034 3 | 0.007 1 | 0.024 5 |
SLMRec | 0.046 0 | 0.023 2 | 0.004 6 | 0.016 5 | 0.055 1 | 0.029 5 | 0.006 1 | 0.021 0 | 0.067 6 | 0.037 4 | 0.007 5 | 0.027 2 |
MENTOR | 0.008 1 | 0.028 6 | ||||||||||
SFELMMR | 0.067 3 | 0.034 6 | 0.006 7 | 0.024 8 | 0.068 2 | 0.036 1 | 0.007 5 | 0.025 6 | 0.075 7 | 0.041 2 | 0.008 3 | 0.029 8 |
Tab. 2 Performance comparison of SFELMMR algorithm and various comparison methods
算法 | TikTok | Baby | Sports | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | |
最优较次优提升/% | 5.49 | 1.17 | 4.69 | 0.81 | 2.56 | 1.98 | 2.74 | 1.59 | 2.99 | 3.52 | 1.22 | 3.11 |
SelfCF | 0.058 6 | 0.029 2 | 0.005 9 | 0.020 3 | 0.052 1 | 0.027 9 | 0.005 8 | 0.019 9 | 0.063 0 | 0.034 4 | 0.007 0 | 0.024 8 |
LayerGCN | 0.059 4 | 0.033 9 | 0.005 9 | 0.026 3 | 0.051 8 | 0.027 7 | 0.005 8 | 0.019 6 | 0.061 6 | 0.033 6 | 0.006 9 | 0.024 1 |
MMGCN | 0.055 2 | 0.029 7 | 0.005 5 | 0.022 0 | 0.042 0 | 0.021 8 | 0.004 7 | 0.015 1 | 0.038 8 | 0.020 6 | 0.004 4 | 0.014 4 |
GRCN | 0.048 8 | 0.023 1 | 0.004 9 | 0.015 4 | 0.052 8 | 0.028 2 | 0.005 9 | 0.020 0 | 0.057 3 | 0.030 9 | 0.006 4 | 0.022 0 |
MGCN | 0.061 9 | 0.032 5 | 0.006 2 | 0.023 6 | 0.061 3 | 0.032 9 | 0.006 8 | 0.023 5 | 0.073 3 | 0.040 2 | 0.008 1 | 0.029 2 |
LATTICE | 0.057 8 | 0.030 8 | 0.005 8 | 0.022 6 | 0.054 9 | 0.029 1 | 0.006 1 | 0.020 5 | 0.062 2 | 0.034 1 | 0.006 9 | 0.024 7 |
FREEDOM | 0.053 7 | 0.031 6 | 0.006 4 | 0.024 5 | 0.062 8 | 0.032 9 | 0.006 8 | 0.022 7 | 0.071 3 | 0.038 2 | 0.007 9 | 0.027 2 |
DRAGON | 0.062 0 | 0.032 8 | 0.006 2 | 0.023 9 | 0.065 6 | 0.034 6 | 0.007 2 | 0.024 4 | 0.072 6 | 0.039 6 | ||
BM3 | 0.061 7 | 0.032 2 | 0.006 2 | 0.023 4 | 0.055 1 | 0.029 0 | 0.006 2 | 0.022 4 | 0.063 5 | 0.034 3 | 0.007 1 | 0.024 5 |
SLMRec | 0.046 0 | 0.023 2 | 0.004 6 | 0.016 5 | 0.055 1 | 0.029 5 | 0.006 1 | 0.021 0 | 0.067 6 | 0.037 4 | 0.007 5 | 0.027 2 |
MENTOR | 0.008 1 | 0.028 6 | ||||||||||
SFELMMR | 0.067 3 | 0.034 6 | 0.006 7 | 0.024 8 | 0.068 2 | 0.036 1 | 0.007 5 | 0.025 6 | 0.075 7 | 0.041 2 | 0.008 3 | 0.029 8 |
算法 | TikTok | Baby | Sports | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | |
SFELMMRK | 0.059 4 | 0.030 6 | 0.005 9 | 0.022 0 | 0.065 8 | 0.034 7 | 0.007 2 | 0.024 5 | 0.073 9 | 0.039 9 | 0.008 1 | 0.028 6 |
SFELMMRT | 0.064 8 | 0.032 4 | 0.006 5 | 0.022 8 | 0.065 3 | 0.035 3 | 0.007 2 | 0.025 3 | 0.074 6 | 0.040 7 | ||
SFELMMRCMA | 0.066 1 | 0.032 9 | 0.005 2 | 0.023 0 | 0.067 0 | 0.035 5 | 0.025 2 | 0.074 5 | 0.040 1 | 0.028 8 | ||
SFELMMRFE | 0.066 6 | 0.034 4 | 0.0067 | 0.024 7 | 0.066 8 | 0.035 6 | 0.025 2 | 0.075 2 | 0.040 7 | 0.029 3 | ||
SFELMMRFE-C | 0.066 8 | 0.0354 | 0.0249 | 0.067 8 | 0.0075 | 0.0256 | 0.075 4 | 0.0083 | 0.029 3 | |||
SFELMMRGP | 0.066 0 | 0.066 1 | 0.035 6 | 0.007 3 | 0.075 0 | 0.040 7 | ||||||
SFELMMRGP-ProJH | 0.034 4 | 0.0067 | 0.024 7 | 0.0361 | 0.040 6 | 0.0083 | 0.029 1 | |||||
SFELMMR | 0.0673 | 0.034 6 | 0.0067 | 0.0682 | 0.0361 | 0.0075 | 0.0256 | 0.0757 | 0.0412 | 0.0083 | 0.0298 |
Tab. 3 Ablation study results
算法 | TikTok | Baby | Sports | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | R@10 | N@10 | P@10 | M@10 | |
SFELMMRK | 0.059 4 | 0.030 6 | 0.005 9 | 0.022 0 | 0.065 8 | 0.034 7 | 0.007 2 | 0.024 5 | 0.073 9 | 0.039 9 | 0.008 1 | 0.028 6 |
SFELMMRT | 0.064 8 | 0.032 4 | 0.006 5 | 0.022 8 | 0.065 3 | 0.035 3 | 0.007 2 | 0.025 3 | 0.074 6 | 0.040 7 | ||
SFELMMRCMA | 0.066 1 | 0.032 9 | 0.005 2 | 0.023 0 | 0.067 0 | 0.035 5 | 0.025 2 | 0.074 5 | 0.040 1 | 0.028 8 | ||
SFELMMRFE | 0.066 6 | 0.034 4 | 0.0067 | 0.024 7 | 0.066 8 | 0.035 6 | 0.025 2 | 0.075 2 | 0.040 7 | 0.029 3 | ||
SFELMMRFE-C | 0.066 8 | 0.0354 | 0.0249 | 0.067 8 | 0.0075 | 0.0256 | 0.075 4 | 0.0083 | 0.029 3 | |||
SFELMMRGP | 0.066 0 | 0.066 1 | 0.035 6 | 0.007 3 | 0.075 0 | 0.040 7 | ||||||
SFELMMRGP-ProJH | 0.034 4 | 0.0067 | 0.024 7 | 0.0361 | 0.040 6 | 0.0083 | 0.029 1 | |||||
SFELMMR | 0.0673 | 0.034 6 | 0.0067 | 0.0682 | 0.0361 | 0.0075 | 0.0256 | 0.0757 | 0.0412 | 0.0083 | 0.0298 |
1 | 刘君良,李晓光. 个性化推荐系统技术进展[J]. 计算机科学, 2020, 47(7):47-55. |
LIU J L, LI X G. Techniques for recommendation system: a survey[J]. Computer Science, 2020, 47(7): 47-55. | |
2 | HE R, McAULEY J. VBPR: visual Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016:144-150. |
3 | WANG Q, WEI Y, YIN J, et al. DualGNN: dual graph neural network for multimedia recommendation[J]. IEEE Transactions on Multimedia, 2023, 25: 1074-1084. |
4 | ZHANG J, ZHU Y, LIU Q, et al. Mining latent structures for multimedia recommendation[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 3872-3880. |
5 | ZHOU X, SHEN Z. A tale of two graphs: freezing and denoising graph structures for multimodal recommendation[C]// Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 935-943. |
6 | ZHU Y, XU Y, YU F, et al. Graph contrastive learning with adaptive augmentation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2069-2080. |
7 | XUN J, ZHANG S, ZHAO Z, et al. Why do we click: visual impression-aware news recommendation[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 3881-3890. |
8 | ZHOU X, ZHOU H, LIU Y, et al. Bootstrap latent representations for multi-modal recommendation[C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 845-854. |
9 | WEI W, HUANG C, XIA L, et al. Multi-modal self-supervised learning for recommendation[C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 790-800. |
10 | TAO Z, WEI Y, WANG X, et al. MGAT: multimodal graph attention network for recommendation[J]. Information Processing and Management, 2020, 57(5): No.102277. |
11 | TAO Z, LIU X, XIA Y, et al. Self-supervised learning for multimedia recommendation[J]. IEEE Transactions on Multimedia, 2023, 25: 5107-5116. |
12 | SUN R, CAO X, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1405-1414. |
13 | ZHOU H, ZHOU X, ZHANG L, et al. Enhancing dyadic relations with homogeneous graphs for multimodal recommendation[C]// Proceedings of the 26th European Conference on Artificial Intelligence/ the 12th Conference on Prestigious Applications of Intelligent Systems. Amsterdam: IOS Press, 2023: 3123-3130. |
14 | ZHOU X, SUN A, LIU Y, et al. SelfCF: a simple framework for self-supervised collaborative filtering[J]. ACM Transactions on Recommender Systems, 2023, 1(2): No.9. |
15 | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
16 | YU J, YIN H, XIA X, et al. Are graph augmentations necessary? simple graph contrastive learning for recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1294-1303. |
17 | XIA L, HUANG C, SHI J, et al. Graph-less collaborative filtering[C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 17-27. |
18 | YI Z, WANG X, OUNIS I, et al. Multi-modal graph contrastive learning for micro-video recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1807-1811. |
19 | ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications [J]. AI Open, 2020, 1: 57-81. |
20 | WEI Y, WANG X, NIE L, et al. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1437-1445. |
21 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
22 | XU J, CHEN Z, YANG S, et al. MENTOR: multi-level self-supervised learning for multimodal recommendation [EB/OL]. [2024-06-05].. |
23 | CHEN T, KORNBLITH S, SWERSKY K, et al. Big self-supervised models are strong semi-supervised learners[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 22243-22255. |
24 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
25 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. |
26 | McAULEY J, TARGETT C, SHI Q, et al. Image-based recommendations on styles and substitutes [C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52. |
27 | KINGMA D P, BA J L. Adam: a method for stochastics optimization[EB/OL]. [2024-06-05].. |
28 | ZHOU X, LIN D, LIU Y, et al. Layer-refined graph convolutional networks for recommendation [C]// Proceedings of the IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 1247-1259. |
29 | WEI Y, WANG X, NIE L, et al. Graph-refined convolutional network for multimedia recommendation with implicit feedback[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3541-3549. |
30 | YU P, TAN Z, LU G, et al. Multi-view graph convolutional network for multimedia recommendation [C]// Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 6576-6585. |
31 | ZHOU X. MMRec: simplifying multimodal recommendation [C]// Proceedings of the 5th ACM International Conference on Multimedia in Asia Workshops. New York: ACM, 2023: No.6. |
[1] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
[2] | Linjia SUN, Lei QIN, Meijin KANG, Yinglin WANG. Automatic speech segmentation algorithm based on syllable type recognition [J]. Journal of Computer Applications, 2025, 45(6): 2034-2042. |
[3] | Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization [J]. Journal of Computer Applications, 2025, 45(6): 1971-1979. |
[4] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. |
[5] | Qing ZHANG, Fan YANG, Yuhan FANG. Chinese spelling correction algorithm based on multi-modal information fusion [J]. Journal of Computer Applications, 2025, 45(5): 1528-1534. |
[6] | Haiyan TIAN, Saihao HUANG, Dong ZHANG, Shoushan LI. Visually guided word segmentation and part of speech tagging [J]. Journal of Computer Applications, 2025, 45(5): 1488-1495. |
[7] | Xin CHEN, Zhonghui LIU, Fan MIN. Concept set construction of reduced formal context and its recommendation application [J]. Journal of Computer Applications, 2025, 45(5): 1415-1423. |
[8] | Yali YANG, Ying LI, Yutao ZHANG, Peihua SONG. Review of multi-modal research methods for face recognition [J]. Journal of Computer Applications, 2025, 45(5): 1645-1657. |
[9] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[10] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[11] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
[12] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
[13] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
[14] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[15] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||