Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 233-241.DOI: 10.11772/j.issn.1001-9081.2025020142
• Multimedia computing and computer simulation • Previous Articles Next Articles
Binhong XIE, Rui WANG(
), Rui ZHANG, Yingjun ZHANG
Received:2025-02-14
Revised:2025-03-18
Accepted:2025-03-24
Online:2026-01-10
Published:2026-01-10
Contact:
Rui WANG
About author:XIE Binhong, born in 1971, M. S., professor. His research interests include intelligent software engineering, machine learning.Supported by:通讯作者:
王瑞
作者简介:谢斌红(1971—),男,山西太原人,教授,硕士,CCF会员,主要研究方向:智能化软件工程、机器学习基金资助:CLC Number:
Binhong XIE, Rui WANG, Rui ZHANG, Yingjun ZHANG. Agent prototype distillation algorithm for few-shot object detection[J]. Journal of Computer Applications, 2026, 46(1): 233-241.
谢斌红, 王瑞, 张睿, 张英俊. 代理原型蒸馏的小样本目标检测算法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 233-241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025020142
| 范式 | 方法 | Novel Set 1 | Novel Set 2 | Novel Set 3 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fine-tuning | TFA w/cos[ | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 |
| MPSR[ | 41.7 | — | 51.4 | 55.2 | 61.8 | 24.4 | — | 39.2 | 39.9 | 47.8 | 35.6 | — | 42.3 | 48.0 | 49.7 | |
| Retent RCNN[ | 42.4 | 45.8 | 45.9 | 53.7 | 56.1 | 21.7 | 27.8 | 35.2 | 37.0 | 40.3 | 30.2 | 37.6 | 43.0 | 49.7 | 50.1 | |
| SRR-FSD[ | 47.8 | 50.5 | 51.3 | 55.2 | 56.8 | 32.5 | 35.3 | 39.1 | 40.8 | 43.8 | 40.1 | 41.5 | 44.3 | 46.9 | 46.4 | |
| DeFRCN[ | 53.6 | 57.5 | 61.5 | 64.1 | 60.8 | 30.1 | 38.1 | 47.0 | 53.3 | 47.9 | 48.4 | 50.9 | 52.3 | 54.9 | 57.4 | |
| LVC[ | 54.5 | 53.2 | 58.8 | 63.2 | 65.7 | 32.8 | 29.2 | 50.7 | 49.8 | 50.6 | 48.4 | 52.7 | 55.0 | 59.6 | 59.6 | |
| CFA-DeFRCN[ | 63.3 | 65.8 | 68.9 | 67.1 | 37.1 | 45.5 | 55.2 | 53.8 | 54.7 | 57.8 | 56.9 | 60.0 | 63.3 | |||
| Meta-learning | DCNet[ | 33.9 | 37.4 | 43.7 | 51.1 | 59.6 | 23.2 | 24.8 | 30.6 | 36.7 | 46.6 | 32.3 | 34.9 | 39.7 | 42.6 | 50.7 |
| CAReD[ | 36.5 | 45.2 | 47.1 | 50.8 | 58.8 | 26.4 | 31.0 | 37.9 | 43.5 | 51.1 | 20.2 | 33.8 | 41.6 | 48.3 | 55.3 | |
| Meta DETR[ | 40.6 | 51.4 | 58.0 | 59.2 | 63.6 | 37.0 | 36.6 | 43.7 | 49.1 | 54.6 | 41.6 | 45.9 | 52.7 | 58.9 | 60.6 | |
| QA-FewDet[ | 42.4 | 51.9 | 55.7 | 62.6 | 63.4 | 25.9 | 37.8 | 46.6 | 48.9 | 51.1 | 35.2 | 42.9 | 47.8 | 54.8 | 53.5 | |
| Meta FR-CNN[ | 43.0 | 54.5 | 60.6 | 66.1 | 65.4 | 27.7 | 35.5 | 46.1 | 47.8 | 51.4 | 40.6 | 46.4 | 53.4 | 59.9 | 58.6 | |
| SMPCCNet[ | 45.5 | 50.3 | 54.2 | 56.1 | — | 27.9 | 35.6 | 43.7 | 46.2 | — | 37.7 | 44.5 | 48.2 | 55.6 | — | |
| FM-FSOD[ | 47.5 | 50.6 | 53.4 | 57.2 | 59.9 | 37.9 | 39.8 | 43.6 | 46.7 | 49.8 | 33.4 | 36.3 | 40.5 | 46.8 | 48.9 | |
| FPD[ | 48.1 | 62.2 | 64.0 | 67.6 | 68.4 | 29.8 | 43.2 | 47.7 | 52.0 | 44.9 | 53.8 | 58.1 | 61.6 | |||
| VFA[ | 57.7 | 64.7 | 67.2 | 67.4 | 51.1 | 51.8 | 51.6 | 48.9 | 54.8 | 56.6 | 59.0 | 58.9 | ||||
| APA-FSOD | 58.2 | 65.1 | 42.0 | 46.7 | 51.8 | 52.4 | 59.7 | |||||||||
Tab. 1 Comparison of model performance (nAP50) on VOC 2007 test set under three novel class splits
| 范式 | 方法 | Novel Set 1 | Novel Set 2 | Novel Set 3 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fine-tuning | TFA w/cos[ | 39.8 | 36.1 | 44.7 | 55.7 | 56.0 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 |
| MPSR[ | 41.7 | — | 51.4 | 55.2 | 61.8 | 24.4 | — | 39.2 | 39.9 | 47.8 | 35.6 | — | 42.3 | 48.0 | 49.7 | |
| Retent RCNN[ | 42.4 | 45.8 | 45.9 | 53.7 | 56.1 | 21.7 | 27.8 | 35.2 | 37.0 | 40.3 | 30.2 | 37.6 | 43.0 | 49.7 | 50.1 | |
| SRR-FSD[ | 47.8 | 50.5 | 51.3 | 55.2 | 56.8 | 32.5 | 35.3 | 39.1 | 40.8 | 43.8 | 40.1 | 41.5 | 44.3 | 46.9 | 46.4 | |
| DeFRCN[ | 53.6 | 57.5 | 61.5 | 64.1 | 60.8 | 30.1 | 38.1 | 47.0 | 53.3 | 47.9 | 48.4 | 50.9 | 52.3 | 54.9 | 57.4 | |
| LVC[ | 54.5 | 53.2 | 58.8 | 63.2 | 65.7 | 32.8 | 29.2 | 50.7 | 49.8 | 50.6 | 48.4 | 52.7 | 55.0 | 59.6 | 59.6 | |
| CFA-DeFRCN[ | 63.3 | 65.8 | 68.9 | 67.1 | 37.1 | 45.5 | 55.2 | 53.8 | 54.7 | 57.8 | 56.9 | 60.0 | 63.3 | |||
| Meta-learning | DCNet[ | 33.9 | 37.4 | 43.7 | 51.1 | 59.6 | 23.2 | 24.8 | 30.6 | 36.7 | 46.6 | 32.3 | 34.9 | 39.7 | 42.6 | 50.7 |
| CAReD[ | 36.5 | 45.2 | 47.1 | 50.8 | 58.8 | 26.4 | 31.0 | 37.9 | 43.5 | 51.1 | 20.2 | 33.8 | 41.6 | 48.3 | 55.3 | |
| Meta DETR[ | 40.6 | 51.4 | 58.0 | 59.2 | 63.6 | 37.0 | 36.6 | 43.7 | 49.1 | 54.6 | 41.6 | 45.9 | 52.7 | 58.9 | 60.6 | |
| QA-FewDet[ | 42.4 | 51.9 | 55.7 | 62.6 | 63.4 | 25.9 | 37.8 | 46.6 | 48.9 | 51.1 | 35.2 | 42.9 | 47.8 | 54.8 | 53.5 | |
| Meta FR-CNN[ | 43.0 | 54.5 | 60.6 | 66.1 | 65.4 | 27.7 | 35.5 | 46.1 | 47.8 | 51.4 | 40.6 | 46.4 | 53.4 | 59.9 | 58.6 | |
| SMPCCNet[ | 45.5 | 50.3 | 54.2 | 56.1 | — | 27.9 | 35.6 | 43.7 | 46.2 | — | 37.7 | 44.5 | 48.2 | 55.6 | — | |
| FM-FSOD[ | 47.5 | 50.6 | 53.4 | 57.2 | 59.9 | 37.9 | 39.8 | 43.6 | 46.7 | 49.8 | 33.4 | 36.3 | 40.5 | 46.8 | 48.9 | |
| FPD[ | 48.1 | 62.2 | 64.0 | 67.6 | 68.4 | 29.8 | 43.2 | 47.7 | 52.0 | 44.9 | 53.8 | 58.1 | 61.6 | |||
| VFA[ | 57.7 | 64.7 | 67.2 | 67.4 | 51.1 | 51.8 | 51.6 | 48.9 | 54.8 | 56.6 | 59.0 | 58.9 | ||||
| APA-FSOD | 58.2 | 65.1 | 42.0 | 46.7 | 51.8 | 52.4 | 59.7 | |||||||||
| 类别 | FPD | VFA | APA-FSOD |
|---|---|---|---|
| 平均 | 67.7 | 71.6 | 71.9 |
| aeroplane | 77.2 | 82.1 | 82.3 |
| bicycle | 77.0 | 81.7 | 81.8 |
| boat | 65.0 | 68.1 | 68.3 |
| bottle | 58.8 | 66.0 | 65.8 |
| car | 79.7 | 79.5 | 80.3 |
| cat | 84.0 | 86.6 | 87.3 |
| chair | 30.6 | 37.7 | 38.2 |
| diningtable | 46.6 | 55.0 | 55.7 |
| dog | 81.4 | 84.4 | 85.2 |
| horse | 84.3 | 86.7 | 86.8 |
| person | 76.3 | 77.3 | 77.6 |
| pottedplant | 43.9 | 45.9 | 46.0 |
| sheep | 72.8 | 75.4 | 75.6 |
| train | 74.2 | 80.9 | 80.5 |
| tvmonitor | 63.8 | 67.3 | 67.4 |
Tab. 2 Comparison of base class accuracy under 1-shot setting
| 类别 | FPD | VFA | APA-FSOD |
|---|---|---|---|
| 平均 | 67.7 | 71.6 | 71.9 |
| aeroplane | 77.2 | 82.1 | 82.3 |
| bicycle | 77.0 | 81.7 | 81.8 |
| boat | 65.0 | 68.1 | 68.3 |
| bottle | 58.8 | 66.0 | 65.8 |
| car | 79.7 | 79.5 | 80.3 |
| cat | 84.0 | 86.6 | 87.3 |
| chair | 30.6 | 37.7 | 38.2 |
| diningtable | 46.6 | 55.0 | 55.7 |
| dog | 81.4 | 84.4 | 85.2 |
| horse | 84.3 | 86.7 | 86.8 |
| person | 76.3 | 77.3 | 77.6 |
| pottedplant | 43.9 | 45.9 | 46.0 |
| sheep | 72.8 | 75.4 | 75.6 |
| train | 74.2 | 80.9 | 80.5 |
| tvmonitor | 63.8 | 67.3 | 67.4 |
| 范式 | 方法 | 10-shot | 30-shot |
|---|---|---|---|
| Fine-tuning | MPSR[ | 9.8 | 14.1 |
| TFA w/cos[ | 10.0 | 13.7 | |
| Retent RCNN[ | 10.5 | 13.8 | |
| SRR-FSD[ | 11.3 | 14.7 | |
| TeSNet[ | 14.1 | 16.5 | |
| Meta-learning | QA-FewDet[ | 11.6 | 16.5 |
| Meta FR-CNN[ | 12.7 | 16.6 | |
| DCNet[ | 12.8 | 18.6 | |
| FM-FSOD[ | 13.1 | — | |
| CAReD[ | 15.5 | 18.4 | |
| VFA[ | 16.2 | 18.9 | |
| FPD[ | 16.5 | 20.1 | |
| SMPCCNet[ | 16.8 | 18.5 | |
| APA-FSOD |
Tab. 3 Performance (nAP) comparison on COCO dataset
| 范式 | 方法 | 10-shot | 30-shot |
|---|---|---|---|
| Fine-tuning | MPSR[ | 9.8 | 14.1 |
| TFA w/cos[ | 10.0 | 13.7 | |
| Retent RCNN[ | 10.5 | 13.8 | |
| SRR-FSD[ | 11.3 | 14.7 | |
| TeSNet[ | 14.1 | 16.5 | |
| Meta-learning | QA-FewDet[ | 11.6 | 16.5 |
| Meta FR-CNN[ | 12.7 | 16.6 | |
| DCNet[ | 12.8 | 18.6 | |
| FM-FSOD[ | 13.1 | — | |
| CAReD[ | 15.5 | 18.4 | |
| VFA[ | 16.2 | 18.9 | |
| FPD[ | 16.5 | 20.1 | |
| SMPCCNet[ | 16.8 | 18.5 | |
| APA-FSOD |
| WCEM | APA | AMRF | 3-shot | 5-shot | 10-shot |
|---|---|---|---|---|---|
| 56.6 | 59.0 | 58.9 | |||
| √ | 56.9 | 59.2 | 59.2 | ||
| √ | √ | 57.2 | 59.7 | 59.6 | |
| √ | √ | √ | 57.5 | 60.1 | 59.7 |
Tab. 4 Performance (nAP) comparison of different modules in ablation experiments at 3/5/10-shot under the novel set 3 of VOC dataset
| WCEM | APA | AMRF | 3-shot | 5-shot | 10-shot |
|---|---|---|---|---|---|
| 56.6 | 59.0 | 58.9 | |||
| √ | 56.9 | 59.2 | 59.2 | ||
| √ | √ | 57.2 | 59.7 | 59.6 | |
| √ | √ | √ | 57.5 | 60.1 | 59.7 |
| 方法 | 参数量/106 | 帧率/(frame·s-1) | 浮点计算量/GFLOPs |
|---|---|---|---|
| Baseline | 56.18 | 14.6 | 843.63 |
| GA | 80.23 | 10.2 | 1 176.38 |
| AA | 81.74 | 12.4 | 965.16 |
Tab. 5 Comparison of ablation experiment results for calculation costs
| 方法 | 参数量/106 | 帧率/(frame·s-1) | 浮点计算量/GFLOPs |
|---|---|---|---|
| Baseline | 56.18 | 14.6 | 843.63 |
| GA | 80.23 | 10.2 | 1 176.38 |
| AA | 81.74 | 12.4 | 965.16 |
| [1] | KÖHLER M, EISENBACH M, GROSS H M. Few-shot object detection: a comprehensive survey [J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(9): 11958-11978. |
| [2] | 史燕燕,史殿习,乔子腾,等.小样本目标检测研究综述[J].计算机学报, 2023, 46(8): 1753-1780. |
| SHI Y Y, SHI D X, QIAO Z T, et al. A survey on recent advances in few-shot object detection [J]. Chinese Journal of Computers, 2023, 46(8): 1753-1780. | |
| [3] | HAN J, REN Y, DING J, et al. Few-shot object detection via variational feature aggregation [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 755-763. |
| [4] | KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428. |
| [5] | YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level low-shot learning [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585. |
| [6] | XIAO Y, LEPETIT V, MARLET R. Few-shot object detection and viewpoint estimation for objects in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3090-3106. |
| [7] | ZHANG G, LUO Z, CUI K, et al. Meta-DETR: image-level few-shot detection with inter-class correlation exploitation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12832-12843. |
| [8] | WANG Z, YANG B, YUE H, et al. Fine-grained prototypes distillation for few-shot object detection [C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 5859-5866. |
| [9] | LU X, DIAO W, MAO Y, et al. Breaking immutable: information-coupled prototype elaboration for few-shot object detection [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 1844-1852. |
| [10] | HAN D, YE T, HAN Y, et al. Agent Attention: on the integration of softmax and linear attention [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15108. Cham: Springer, 2025: 124-140. |
| [11] | FINDER S E, AMOYAL R, TREISTER E, et al. Wavelet convolutions for large receptive fields [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15112. Cham: Springer, 2025: 363-380. |
| [12] | 李鸿天,史鑫昊,潘卫国,等.融合多尺度和注意力机制的小样本目标检测[J].计算机应用, 2024, 44(5): 1437-1444. |
| LI H T, SHI X H, PAN W G, et al. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. | |
| [13] | WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 456-472. |
| [14] | KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representative-based metric learning for classification and few-shot object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5192-5201. |
| [15] | HAN G, HUANG S, MA J, et al. Meta Faster R-CNN: towards accurate few-shot object detection with attentive feature alignment [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 780-789. |
| [16] | HU H, BAI S, LI A, et al. Dense relation distillation with context-aware aggregation for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10180-10189. |
| [17] | KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. [2024-12-20]. . |
| [18] | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928. |
| [19] | OpenMMLab. MMFewShot: OpenMMLab few shot learning toolbox and benchmark [EB/OL]. [2024-12-20]. . |
| [20] | GUIRGUIS K, HENDAWY A, ESKANDAR G, et al. CFA: constraint-based finetuning approach for generalized few-shot object detection [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4038-4048. |
| [21] | FAN Z, MA Y, LI Z, et al. Generalized few-shot object detection without forgetting [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4525-4534. |
| [22] | ZHU C, CHEN F, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8778-8787. |
| [23] | QIAO L, ZHAO Y, LI Z, et al. DeFRCN: decoupled faster R-CNN for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8661-8670. |
| [24] | KAUL P, XIE W, ZISSERMAN A. Label, verify, correct: a simple few shot object detection method [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14217-14227. |
| [25] | QUAN J, GE B, CHEN L. Cross attention redistribution with contrastive learning for few shot object detection [J]. Displays, 2022, 72: No.102162. |
| [26] | HAN G, HE Y, HUANG S, et al. Query adaptive few-shot object detection with heterogeneous graph convolutional networks [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3243-3252. |
| [27] | XU J, WANG Y, HE X, et al. Support-query mutual promotion and classification correction network for few-shot object detection [J]. IEEE Signal Processing Letters, 2024, 31: 201-205. |
| [28] | LI Y, FENG W, LYU S, et al. Feature reconstruction and metric based network for few-shot object detection [J]. Computer Vision and Image Understanding, 2023, 227: No.103600. |
| [29] | ZHAO X, LIU X, MA Y, et al. Temporal speciation network for few-shot object detection [J]. IEEE Transactions on Multimedia, 2023, 25: 8267-8278. |
| [1] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
| [2] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
| [3] | Yanpeng ZHANG, Yuqian ZHAO, Fan ZHANG, Tenghai QIU, Gui GUI, Lingli YU. Capacitated vehicle routing problem solving method based on improved MAML and GVAE [J]. Journal of Computer Applications, 2025, 45(11): 3642-3648. |
| [4] | Zhihao WU, Ziqiu CHI, Ting XIAO, Zhe WANG. Meta-learning adaption for few-shot text-to-speech [J]. Journal of Computer Applications, 2024, 44(5): 1629-1635. |
| [5] | Keyi FU, Gaocai WANG, Man WU. Few-shot object detection method based on improved region proposal network and feature aggregation [J]. Journal of Computer Applications, 2024, 44(12): 3790-3797. |
| [6] | Xiaomin ZHOU, Fei TENG, Yi ZHANG. Automatic international classification of diseases coding model based on meta-network [J]. Journal of Computer Applications, 2023, 43(9): 2721-2726. |
| [7] | Hui WANG, Jianhong LI. Few-shot recognition method of 3D models based on Transformer [J]. Journal of Computer Applications, 2023, 43(6): 1750-1758. |
| [8] | Yaru HAN, Lianshan YAN, Tao YAO. Deep hashing retrieval algorithm based on meta-learning [J]. Journal of Computer Applications, 2022, 42(7): 2015-2021. |
| [9] | Yan LI, Jie GUO, Bin FAN. Feature construction and preliminary analysis of uncertainty for meta-learning [J]. Journal of Computer Applications, 2022, 42(2): 343-348. |
| [10] | WEI Chunwu, ZHAO Juanjuan, TANG Xiaoxian, QIANG Yan. Knowledge extraction method for follow-up data based on multi-term distillation network [J]. Journal of Computer Applications, 2021, 41(10): 2871-2878. |
| [11] | SUN Zhongfan, ZHOU Zhenghua, ZHAO Jianwei. Super-resolution reconstruction method with arbitrary magnification based on spatial meta-learning [J]. Journal of Computer Applications, 2020, 40(12): 3471-3477. |
| [12] | CUI Jianshuang, LIU Xiaochan, YANG Meihua, LI Wenyan. Meta-learning based optimization algorithm selection framework and its empirical study [J]. Journal of Computer Applications, 2017, 37(4): 1105-1110. |
| [13] | ;;. Distributed association rules mining algorithm by sampling and meta-learning [J]. Journal of Computer Applications, 2006, 26(4): 872-874. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||