Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 2015-2021.DOI: 10.11772/j.issn.1001-9081.2021040660
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Yaru HAN1, Lianshan YAN2(), Tao YAO1
Received:
2021-04-25
Revised:
2021-09-01
Accepted:
2021-09-07
Online:
2022-07-15
Published:
2022-07-10
Contact:
Lianshan YAN
About author:
HAN Yaru, born in 1995, M. S. candidate. Her research interests include multimedia image retrieval, artificial intelligence, machine learning.Supported by:
通讯作者:
闫连山
作者简介:
韩亚茹(1995—),女,山东济南人,硕士研究生,主要研究方向:多媒体图像检索、人工智能、机器学习基金资助:
CLC Number:
Yaru HAN, Lianshan YAN, Tao YAO. Deep hashing retrieval algorithm based on meta-learning[J]. Journal of Computer Applications, 2022, 42(7): 2015-2021.
韩亚茹, 闫连山, 姚涛. 基于元学习的深度哈希检索算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2015-2021.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040660
算法 | CIFAR-10 | CIFAR-100 | STL-10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | |
ADSH[ | 91.82 | 93.12 | 93.91 | 94.07 | 3.18 | 20.85 | 58.97 | 70.64 | 91.76 | 93.29 | 93.56 | 93.07 |
FSSH[ | 62.17 | 67.46 | 68.12 | 68.84 | 14.81 | 19.23 | 22.91 | 25.34 | 62.43 | 67.55 | 69.03 | 69.23 |
CSQ[ | 93.23 | 95.18 | 96.21 | 96.23 | 30.29 | 33.31 | 48.56 | 58.84 | 67.55 | 69.23 | 79.25 | 82.56 |
本文算法 | 93.51 | 93.45 | 93.72 | 93.92 | 70.51 | 74.32 | 78.42 | 79.13 | 92.25 | 92.85 | 93.13 | 94.65 |
Tab.1 mAP@all of four hash codes with different lengths on balanced datasets
算法 | CIFAR-10 | CIFAR-100 | STL-10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | |
ADSH[ | 91.82 | 93.12 | 93.91 | 94.07 | 3.18 | 20.85 | 58.97 | 70.64 | 91.76 | 93.29 | 93.56 | 93.07 |
FSSH[ | 62.17 | 67.46 | 68.12 | 68.84 | 14.81 | 19.23 | 22.91 | 25.34 | 62.43 | 67.55 | 69.03 | 69.23 |
CSQ[ | 93.23 | 95.18 | 96.21 | 96.23 | 30.29 | 33.31 | 48.56 | 58.84 | 67.55 | 69.23 | 79.25 | 82.56 |
本文算法 | 93.51 | 93.45 | 93.72 | 93.92 | 70.51 | 74.32 | 78.42 | 79.13 | 92.25 | 92.85 | 93.13 | 94.65 |
算法 | CIFAR-10 | CIFAE-100 | STL-10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | |
ADSH[ | 39.74 | 38.87 | 51.91 | 74.72 | 92.91 | 23.44 | 24.12 | 24.94 | 27.58 | 30.11 | 56.16 | 60.99 | 80.05 | 92.24 | 94.68 |
FSSH[ | 22.24 | 45.37 | 46.52 | 53.55 | 58.76 | 12.92 | 13.79 | 14.47 | 15.85 | 16.72 | 41.76 | 45.06 | 48.54 | 53.42 | 59.93 |
CSQ[ | 70.13 | 76.98 | 77.25 | 86.68 | 89.14 | 13.52 | 15.66 | 26.22 | 27.83 | 28.19 | 57.23 | 62.14 | 73.16 | 79.86 | 85.17 |
本文算法 | 70.67 | 77.91 | 78.93 | 85.28 | 87.88 | 22.23 | 30.14 | 38.59 | 40.10 | 51.31 | 58.23 | 63.38 | 73.56 | 79.97 | 84.08 |
Tab.2 mAP@all of 32 bit hash code on unbalanced datasets
算法 | CIFAR-10 | CIFAE-100 | STL-10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | |
ADSH[ | 39.74 | 38.87 | 51.91 | 74.72 | 92.91 | 23.44 | 24.12 | 24.94 | 27.58 | 30.11 | 56.16 | 60.99 | 80.05 | 92.24 | 94.68 |
FSSH[ | 22.24 | 45.37 | 46.52 | 53.55 | 58.76 | 12.92 | 13.79 | 14.47 | 15.85 | 16.72 | 41.76 | 45.06 | 48.54 | 53.42 | 59.93 |
CSQ[ | 70.13 | 76.98 | 77.25 | 86.68 | 89.14 | 13.52 | 15.66 | 26.22 | 27.83 | 28.19 | 57.23 | 62.14 | 73.16 | 79.86 | 85.17 |
本文算法 | 70.67 | 77.91 | 78.93 | 85.28 | 87.88 | 22.23 | 30.14 | 38.59 | 40.10 | 51.31 | 58.23 | 63.38 | 73.56 | 79.97 | 84.08 |
1 | 张楚涵,张家侨,冯剑琳. AKNN-Qalsh: PostgreSQL系统高维空间近似最近邻检索插件[J]. 中山大学学报(自然科学版), 2019, 58(3): 79-85. |
ZHANG C H, ZHANG J Q, FENG J L. AKNN-Qalsh: an approximate KNN search extension for high-dimensional data in PostgreSQL[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(3):79-85. | |
2 | 陈诚,邹焕新,邵宁远,等. 面向遥感影像的深度语义哈希检索[J]. 中国图象图形学报, 2018, 24(4): 655-663. |
CHEN C, ZOU H X, SHAO N Y, et al. Deep semantic Hashing retrieval of remote sensing images[J]. Journal of Image and Graphics, 2019, 24(4): 655-663. | |
3 | DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]// Proceedings of the 20th Annual Symposium on Computational Geometry. New York: ACM, 2004: 253-262. 10.1145/997817.997857 |
4 | 康松林,刘楚楚,樊晓平,等. WOS-ELM算法在入侵检测中的研究[J]. 小型微型计算机系统, 2015, 36(8): 1779-1783. 10.3969/j.issn.1000-1220.2015.08.022 |
KANG S L, LIU C C, FAN X P, et al. Research on intrusion detection based on WOS-ELM algorithm[J]. Journal of Chinese Computer Systems, 2015, 36(8): 1779-1783. 10.3969/j.issn.1000-1220.2015.08.022 | |
5 | ZIĘBA M, TOMCZAK S K, TOMCZAK J M. Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction[J]. Expert Systems with Applications, 2016, 58: 93-101. 10.1016/j.eswa.2016.04.001 |
6 | KHATAMI A, BABAIE M, KHOSRAVI A, et al. Parallel deep solutions for image retrieval from imbalanced medical imaging archives[J]. Applied Soft Computing, 2018, 63: 197-205. 10.1016/j.asoc.2017.11.024 |
7 | LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266): 1332-1338. 10.1126/science.aab3050 |
8 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135. |
9 | JIANG L, ZHOU Z Y, LEUNG T, et al. MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 2304-2313. |
10 | WU L J, TIAN F, XIA Y C, et al. Learning to teach with dynamic loss functions[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 6467-6478. |
11 | WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2008: 1753-1760. |
12 | GONG Y C, LAZEBNIK S, GORDO A, et al. Iterative quantization a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929. 10.1109/tpami.2012.193 |
13 | SHEN F M, XU Y, LIU L, et al. Unsupervised deep hashing with similarity-adaptive and discrete optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 3034-3044. 10.1109/tpami.2018.2789887 |
14 | KULIS B, DARRELL T. Learning to hash with binary reconstructive embeddings[C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2009: 1042-1050. |
15 | LIU W, WANG J, JI R R, et al. Supervised hashing with kernels[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2074-2081. 10.1109/cvpr.2012.6247912 |
16 | SHEN F M, SHEN C H, LIU W, et al. Supervised discrete hashing[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 37-45. 10.1109/cvpr.2015.7298598 |
17 | YAO T, LONG F C, MEI T, et al. Deep semantic-preserving and ranking-based hashing for image retrieval[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2016: 3931-3937. |
18 | LIU H M, WANG R P, SHAN S G, et al. Deep supervised hashing for fast image retrieval[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2064-2072. 10.1109/cvpr.2016.227 |
19 | LI Q, SUN Z N, HE R, et al. Deep supervised discrete hashing[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 2479-2488. |
20 | DONG Q, GONG S G, ZHU X T. Class rectification hard mining for imbalanced deep learning[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1869-1878. 10.1109/iccv.2017.205 |
21 | LIU X Y, WU J X, ZHOU Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(2): 539-550. 10.1109/tsmcb.2008.2007853 |
22 | MALDONADO S, MONTECINOS C. Robust classification of imbalanced data using one-class and two-class SVM-based multiclassifiers[J]. Intelligent Data Analysis, 2014, 18(1): 95-112. 10.3233/ida-130630 |
23 | ZHANG Z L, LUO X G, GARCÍA S, et al. Cost-sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers[J]. Applied Soft Computing, 2017, 56: 357-367. 10.1016/j.asoc.2017.03.016 |
24 | SUN Y, LI Z L, LI X W, et al. Classifier selection and ensemble model for multi-class imbalance learning in education grants prediction[J]. Applied Artificial Intelligence, 2021, 35(4): 290-303. 10.1080/08839514.2021.1877481 |
25 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
26 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 |
27 | ZHEN Y, YEUNG D Y. A probabilistic model for multimodal hash function learning[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 940-948. 10.1145/2339530.2339678 |
28 | LUO X, NIE L Q, HE X G, et al. Fast scalable supervised hashing[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 735-744. 10.1145/3209978.3210035 |
29 | JIANG Q Y, LI W J. Asymmetric deep supervised hashing[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3342-3349. 10.1609/aaai.v32i1.11814 |
30 | YUAN L, WANG T, ZHANG X P, et al. Central similarity quantization for efficient image and video retrieval [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3080-3089. 10.1109/cvpr42600.2020.00315 |
31 | WANG J, KUMAR S, CHANG S F. Semi-supervised hashing for large-scale search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2393-2406. 10.1109/tpami.2012.48 |
32 | GUI J, LIU T L, SUN Z N, et al. Fast supervised discrete hashing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 490-496. 10.1109/tpami.2017.2678475 |
33 | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5375-5384. 10.1109/cvpr.2016.580 |
34 | ZHAO F, HUANG Y Z, WANG L, et al. Deep semantic ranking based hashing for multi-label image retrieval[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1556-1564. 10.1109/cvpr.2015.7298763 |
35 | YANG H F, LIN K, CHEN C S. Supervised learning of semantics-preserving hash via deep convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 437-451. 10.1109/tpami.2017.2666812 |
36 | LI X, LIN G S, SHEN C H, et al. Learning hash functions using column generation[C]// Proceedings of the 30th International Conference on Machine Learning. New York: JMLR.org, 2013: 142-150. |
37 | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8689. Cham: Springer, 2014: 818-833. |
38 | OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1717-1724. 10.1109/cvpr.2014.222 |
39 | WANG J D, ZHANG T, SONG J K, et al. A survey on learning to hash[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 769-790. 10.1109/tpami.2017.2699960 |
40 | LAI H J, PAN Y, LIU Y, et al. Simultaneous feature learning and hash coding with deep neural networks[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3270-3278. 10.1109/cvpr.2015.7298947 |
41 | SHU J, XIE Q, YI L X, et al. Meta-weight-net: learning an explicit mapping for sample weighting[C/OL]// Proceedings of the 2019 Conference and Workshop on Neural Information Processing Systems. [2021-02-21].. |
42 | LIN K, YANG H F, HSIAO J H, et al. Deep learning of binary hash codes for fast image retrieval[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 27-35. 10.1109/cvprw.2015.7301269 |
43 | LU X Q, ZHENG X T, LI X L. Latent semantic minimal hashing for image retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(1): 355-368. 10.1109/tip.2016.2627801 |
44 | LIN K, LU J W, CHEN C S, et al. Learning compact binary descriptors with unsupervised deep neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1183-1192. 10.1109/cvpr.2016.133 |
45 | NI B B, YAN S C, KASSIM A. Learning a propagable graph for semisupervised learning: classification and regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(1): 114-126. 10.1109/tkde.2010.209 |
46 | 柯圣财,赵永威,李弼程,等. 基于卷积神经网络和监督核哈希的图像检索方法[J]. 电子学报, 2017, 45(1):157-163. 10.3969/j.issn.0372-2112.2017.01.022 |
KE S C, ZHAO Y W, LI B C, et al. Image retrieval based on convolutional neural network and kernel-based supervised Hashing[J]. Acta Electronica Sinica, 2017, 45(1): 157-163. 10.3969/j.issn.0372-2112.2017.01.022 | |
47 | 王珊,王会举,覃雄派,等. 架构大数据:挑战、现状与展望[J]. 计算机学报, 2011, 34(10): 1741-1752. 10.3724/sp.j.1016.2011.01741 |
WANG S, WANG H J, QIN X P, et al. Architecting big data: challenges, studies and forecasts[J]. Chinese Journal of Computers, 2011, 34(10): 1741-1752. 10.3724/sp.j.1016.2011.01741 | |
48 | 艾列富,于俊清,管涛,等. 大规模图像特征检索中查询结果的自适应过滤[J]. 计算机学报, 2015, 38(1): 122-132. |
AI L F, YU J Q, GUAN T, et al. Adaptively filtering query results for large scale image feature retrieval[J]. Chinese Journal of Computers, 2015, 38(1): 122-132. | |
49 | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. 10.1613/jair.953 |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[3] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Qiangkui LENG, Xuezi SUN, Xiangfu MENG. Oversampling method for imbalanced data based on sample potential and noise evolution [J]. Journal of Computer Applications, 2024, 44(8): 2466-2475. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[13] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||