Research on error accumulative sum of single precision floating point
CHEN Tianchao1,2,FENG Baiming2,3
1. Department of Information Engineering, Lanzhou Vocational Technical College, Lanzhou Gansu 730070, China
2. State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
3. College of Computer Science and Engineering, Northwest Normal University, Lanzhou Gansu 730070,China
CHEN Tianchao FENG Baiming. Research on error accumulative sum of single precision floating point[J]. Journal of Computer Applications, 2013, 33(06): 1531-1539.
[1] 王力.科学计算程序语言的浮点数机制研究[J].计算机科学,2008,35(4):285-289.[2] IEEE Computer Society. IEEE standard for floating-point arithmetic[S/OL].[2012-10-20].http://ieeexplore.ieee.org/servlet/opac?punumber=4610933. [3] BABOULIN M, BUTTARI A, DONGARRA J, et al. Accelerating scientific computations with mixed precision algorithms[J]. Computer Physics Communications, 2009, 180(12): 2526-2533.[4] 王磊,张云泉,刘芳芳,等.基于混合精度算法的改进 HPL 软件包[J].计算机工程,2010,36(19):47-49.[5] DEMMEL J, HIDA Y. Accurate and efficient floating point summation[J]. SIAM Journal on Scientific Computing, 2003, 25(4):1214-1248.[6] 白中英. 计算机组成原理[M]. 4版.北京:科学出版社,2008.[7] 李怀刚. 计算机组成原理[M].北京: 机械工业出版社,2012.[8] 封超.计算机组成与系统结构[M].北京:清华大学出版社,2012.[9] STALLINGS W.计算机组织与体系结构[M].7版.张昆藏,译.北京:清华大学出版社,2006.[10] BOLDO S, MELQUIOND G. Emulation of a FMA and correctly-rounded sums: proved algorithms using rounding to odd[J]. IEEE Transactions on Computers, 2008, 57(4):462-471.[11] DEMMEL J, HIDA Y. Fast and accurate floating point summation with application to computational geometry[J]. Numerical Algorithms, 2004, 37(1~4):101-112.[12] 王俊,文延华,漆锋滨. 计算机浮点功能测试方法[J].计算机应用与软件,2006,23(6):68-70.