[1] HAN J, ZHANG L, ZHENG T. Speech signal processing [M]. Beijing: Tsinghua University Press, 2004: 191-193.(韩纪庆,张磊,郑铁然.语音信号处理[M].北京:清华大学出版社,2004:191-193.) [2] GEORGE K K, ARUNRAJ K, SREEKUMAR K T, et al. Towards improving the performance of text/language independent speaker recognition systems [C]// EPSCICON 2014: Proceedings of the 2014 International Conference on Power Signals Control and Computations. Piscataway: IEEE, 2014: 1-6. [3] MENG J, YANG D. Research on training duration of UBM in speaker identification [J]. Journal of Beijing Information Science and Technology University, 2013, 28(3): 87-91.(孟君,杨大利.说话人辨认中通用背景模型训练时长研究[J].北京信息科技大学学报:自然科学版,2013,28(3):87-91.) [4] ZHOU Y. Speaker verification based on factor analysis [D].Hefei: University of Science and Technology of China, 2010.(周毓.基于因子分析的说话人确认[D].合肥:中国科学技术大学,2010.) [5] HAUTAMAKI V, KINNUNEN T, KARKKAINEN I, et al. Maxi-mum a posteriori adaptation of the centroid model for speaker verification [J]. IEEE Signal Processing Letters, 2008, 15: 162-165. [6] ZHAN L, JING X. Speaker recognition system based on VQ-MAP and SVM [J]. Computer Engineering and Applications, 2011, 47(13): 136-138.(展领,景新幸.基于VQ-MAP和SVM融合的说话人识别系统[J].计算机工程与应用,2011,47(13):136-138.) [7] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300. [8] ZHENG R, ZHANG S, XU B. Text-independent speaker identification using GMM-UBM and frame level likelihood normalization [C]// Proceedings of the 2004 International Symposium on Chinese Spoken Language Processing. Piscataway: IEEE, 2004: 289-292. [9] SHA F, SAUL L K. Large margin Gaussian mixture modeling for phonetic classification and recognition [C]// ICASSP 2006: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2006: 265-268. [10] KINNUNEN T, FRÄNTI P. Speaker discriminative weighting method for VQ-based speaker identification [C]// Proceedings of the Third International Conference on Audio- and Video-based Biometric Person Authentication, LNCS 2091. Berlin: Springer, 2001: 150-156. [11] DAN Z, ZHENG S, SUN S, et al. Speaker recognition based on LS-SVM [C]// ICICIC'08: Proceedings of the 3rd International Conference on Innovative Computing Information and Control. Piscataway: IEEE, 2008: 525-525. [12] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. [13] MURTY K S R, YEGNANARAYANA B. Combining evidence from residual phase and MFCC features for speaker recognition [J]. IEEE Signal Processing Letters, 2006, 13(1): 52-55. [14] HATCH A O, KAJAREKAR S S, STOLCKE A. Within-class covariance normalization for SVM-based speaker recognition [EB/OL]. [2015-01-10]. http://www.icsi.berkeley.edu/pubs/speech/HatchICSLP06.pdf. [15] YANG J, ZHANG L, YANG J, et al. From classifiers to discriminators: a nearest neighbor rule induced discriminant analysis [J]. Pattern Recognition, 2011, 44(7): 1387-1402. [16] HANSEN J H L, SUH J W, ANGKITITRAKUL P, et al. Effective background data selection for SVM-based speaker recognition with unseen test environments: more is not always better [J]. International Journal of Speech Technology, 2014, 17(3): 211-221. [17] SUYKENS J A K, de BRABANTER J, LUKAS L, et al. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, 2002, 48(1): 85-105. [18] GAO H, WANG X. LS-SVM based intrusion detection using kernel space approximation and kernel-target alignment [C]// WCICA 2006: Proceedings of the Sixth World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2006: 4214-4218. [19] CAICEDO A, van HUFFEL S. Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing [C]// EMBC 2010: Proceedings of the 2010 Annual International Conference on Engineering in Medicine and Biology Society. Piscataway: IEEE, 2010: 988-991. |