Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (5): 1479-1484.DOI: 10.11772/j.issn.1001-9081.2023050880
Special Issue: 第十九届中国机器学习会议(CCML 2023)
• The 19th China Conference on Machine Learning (CCML 2023) • Previous Articles Next Articles
Boshi ZOU, Ming YANG, Chenchen ZONG, Mingkun XIE, Shengjun HUANG()
Received:
2023-07-05
Revised:
2023-07-21
Accepted:
2023-07-24
Online:
2023-08-07
Published:
2024-05-10
Contact:
Shengjun HUANG
About author:
ZOU Boshi, born in 1999, M.S. candidate. His research interests include machine learning.通讯作者:
黄圣君
作者简介:
邹博士(1999—),男,河南商丘人,硕士研究生,主要研究方向:机器学习CLC Number:
Boshi ZOU, Ming YANG, Chenchen ZONG, Mingkun XIE, Shengjun HUANG. Robust learning method by reweighting examples with negative learning[J]. Journal of Computer Applications, 2024, 44(5): 1479-1484.
邹博士, 杨铭, 宗辰辰, 谢明昆, 黄圣君. 基于负学习的样本重加权鲁棒学习方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1479-1484.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023050880
数据集 | 不平衡率 | 噪声率 (对称噪声) | 平均准确率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CE | DivideMix | UNICON | MW-Net | CurveNet | RoLT | HAR | TBSS | NLRW | |||
CIFAR-10 | 10 | 0.4 | 68.98 | 82.67 | 84.25 | 70.90 | 78.03 | 81.62 | 77.44 | 87.21 | 89.59 |
0.6 | 53.47 | 80.17 | 82.29 | 59.85 | 67.82 | 76.58 | 63.75 | 85.11 | 86.23 | ||
100 | 0.4 | 46.56 | 32.42 | 61.23 | 46.62 | 58.55 | 60.11 | 51.54 | 63.64 | 70.00 | |
0.6 | 36.35 | 34.73 | 54.69 | 39.33 | 43.16 | 44.23 | 38.28 | 58.40 | 63.81 | ||
CIFAR-100 | 10 | 0.4 | 33.42 | 54.71 | 52.34 | 32.03 | 41.06 | 42.95 | 38.17 | 57.04 | 59.10 |
0.6 | 23.07 | 44.98 | 45.87 | 21.71 | 29.83 | 32.59 | 26.09 | 46.59 | 48.32 | ||
100 | 0.4 | 21.36 | 36.20 | 32.09 | 19.65 | 23.64 | 23.64 | 20.21 | 37.25 | 39.30 | |
0.6 | 14.11 | 26.29 | 24.82 | 13.72 | 17.41 | 17.41 | 14.89 | 26.43 | 27.81 |
Tab. 1 Comparison of average accuracy for symmetrical noise with different noise rates and imbalance rates on experimental datasets
数据集 | 不平衡率 | 噪声率 (对称噪声) | 平均准确率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CE | DivideMix | UNICON | MW-Net | CurveNet | RoLT | HAR | TBSS | NLRW | |||
CIFAR-10 | 10 | 0.4 | 68.98 | 82.67 | 84.25 | 70.90 | 78.03 | 81.62 | 77.44 | 87.21 | 89.59 |
0.6 | 53.47 | 80.17 | 82.29 | 59.85 | 67.82 | 76.58 | 63.75 | 85.11 | 86.23 | ||
100 | 0.4 | 46.56 | 32.42 | 61.23 | 46.62 | 58.55 | 60.11 | 51.54 | 63.64 | 70.00 | |
0.6 | 36.35 | 34.73 | 54.69 | 39.33 | 43.16 | 44.23 | 38.28 | 58.40 | 63.81 | ||
CIFAR-100 | 10 | 0.4 | 33.42 | 54.71 | 52.34 | 32.03 | 41.06 | 42.95 | 38.17 | 57.04 | 59.10 |
0.6 | 23.07 | 44.98 | 45.87 | 21.71 | 29.83 | 32.59 | 26.09 | 46.59 | 48.32 | ||
100 | 0.4 | 21.36 | 36.20 | 32.09 | 19.65 | 23.64 | 23.64 | 20.21 | 37.25 | 39.30 | |
0.6 | 14.11 | 26.29 | 24.82 | 13.72 | 17.41 | 17.41 | 14.89 | 26.43 | 27.81 |
数据集 | 不平衡率 | 噪声率 (翻转噪声) | 平均准确率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CE | DivideMix | UNICON | MW-Net | CurveNet | RoLT | HAR | TBSS | NLRW | |||
CIFAR-10 | 10 | 0.2 | 79.81 | 80.92 | 72.81 | 79.34 | 82.64 | 83.88 | 82.85 | 86.04 | 90.87 |
0.4 | 69.63 | 69.35 | 69.04 | 65.49 | 77.44 | 58.29 | 69.19 | 80.53 | 89.15 | ||
CIFAR-100 | 0.2 | 47.16 | 58.09 | 55.99 | 42.52 | 51.16 | 48.19 | 48.50 | 59.14 | 62.38 | |
0.4 | 33.70 | 41.99 | 44.70 | 30.42 | 38.49 | 39.32 | 33.20 | 46.75 | 48.78 |
Tab. 2 Comparison of average accuracy for flip noise with different noise rates on experimental datasets
数据集 | 不平衡率 | 噪声率 (翻转噪声) | 平均准确率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CE | DivideMix | UNICON | MW-Net | CurveNet | RoLT | HAR | TBSS | NLRW | |||
CIFAR-10 | 10 | 0.2 | 79.81 | 80.92 | 72.81 | 79.34 | 82.64 | 83.88 | 82.85 | 86.04 | 90.87 |
0.4 | 69.63 | 69.35 | 69.04 | 65.49 | 77.44 | 58.29 | 69.19 | 80.53 | 89.15 | ||
CIFAR-100 | 0.2 | 47.16 | 58.09 | 55.99 | 42.52 | 51.16 | 48.19 | 48.50 | 59.14 | 62.38 | |
0.4 | 33.70 | 41.99 | 44.70 | 30.42 | 38.49 | 39.32 | 33.20 | 46.75 | 48.78 |
数据集 | 不平 衡率 | 噪声率(对称 噪声) | 平均准确率/% | ||||
---|---|---|---|---|---|---|---|
CE | RW- | NL- | SEMI- | NLRW | |||
CIFAR-10 | 10 | 0.4 | 68.98 | 86.68 | 88.98 | 86.28 | 89.59 |
0.6 | 53.47 | 68.95 | 84.84 | 78.89 | 86.23 | ||
100 | 0.4 | 46.56 | 60.92 | 68.93 | 69.69 | 70.00 | |
0.6 | 36.35 | 48.83 | 65.59 | 54.21 | 63.81 | ||
CIFAR-100 | 10 | 0.4 | 33.42 | 39.78 | 56.52 | 53.99 | 59.10 |
0.6 | 23.07 | 26.31 | 38.14 | 41.51 | 48.32 | ||
100 | 0.4 | 21.36 | 27.52 | 32.28 | 35.77 | 39.30 | |
0.6 | 14.11 | 15.67 | 21.26 | 24.31 | 27.81 |
Tab. 3 Ablation experimental results of symmetrical noise with different noise rates and imbalance rates on experimental datasets
数据集 | 不平 衡率 | 噪声率(对称 噪声) | 平均准确率/% | ||||
---|---|---|---|---|---|---|---|
CE | RW- | NL- | SEMI- | NLRW | |||
CIFAR-10 | 10 | 0.4 | 68.98 | 86.68 | 88.98 | 86.28 | 89.59 |
0.6 | 53.47 | 68.95 | 84.84 | 78.89 | 86.23 | ||
100 | 0.4 | 46.56 | 60.92 | 68.93 | 69.69 | 70.00 | |
0.6 | 36.35 | 48.83 | 65.59 | 54.21 | 63.81 | ||
CIFAR-100 | 10 | 0.4 | 33.42 | 39.78 | 56.52 | 53.99 | 59.10 |
0.6 | 23.07 | 26.31 | 38.14 | 41.51 | 48.32 | ||
100 | 0.4 | 21.36 | 27.52 | 32.28 | 35.77 | 39.30 | |
0.6 | 14.11 | 15.67 | 21.26 | 24.31 | 27.81 |
数据集 | 不平 衡率 | 噪声率 (翻转 噪声) | 平均准确率/% | ||||
---|---|---|---|---|---|---|---|
CE | RW- | NL- | SEMI- | NLRW | |||
CIFAR-10 | 10 | 0.2 | 79.81 | 85.32 | 89.93 | 90.59 | 90.87 |
0.4 | 69.63 | 76.32 | 88.54 | 85.52 | 89.15 | ||
CIFAR-100 | 0.2 | 47.16 | 52.94 | 57.58 | 61.89 | 62.38 | |
0.4 | 33.70 | 38.66 | 42.62 | 47.49 | 48.78 |
Tab. 4 Ablation experimental results of flip noise with different noise rates on experimental datasets
数据集 | 不平 衡率 | 噪声率 (翻转 噪声) | 平均准确率/% | ||||
---|---|---|---|---|---|---|---|
CE | RW- | NL- | SEMI- | NLRW | |||
CIFAR-10 | 10 | 0.2 | 79.81 | 85.32 | 89.93 | 90.59 | 90.87 |
0.4 | 69.63 | 76.32 | 88.54 | 85.52 | 89.15 | ||
CIFAR-100 | 0.2 | 47.16 | 52.94 | 57.58 | 61.89 | 62.38 | |
0.4 | 33.70 | 38.66 | 42.62 | 47.49 | 48.78 |
1 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th Internation Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105. |
2 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015, 1: 91-99. |
3 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
4 | PAOLACCI G, CHANDLER J J, IPEIROTIS P G. Running experiments on amazon mechanical turk[J]. Judgment and Decision Making, 2010, 5(5): 411-419. 10.1017/s1930297500002205 |
5 | MALACH E, SHALEV-SHWARTZ S. Decoupling “when to update” from “how to update”[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 961-971. |
6 | LI S, XIA X, GE S, et al. Selective-supervised contrastive learning with noisy labels[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 316-325. 10.1109/cvpr52688.2022.00041 |
7 | HAN B, YAO Q, YU X, et al. Co-teaching: robust training of deep neural networks with extremely noisy labels[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 8536-8546. 10.48550/arXiv.1804.06872 |
8 | SONG H, KIM M, PARK D, et al. Learning from noisy labels with deep neural networks: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8135-8153. 10.1109/tnnls.2022.3152527 |
9 | JIANG S, LI J, WANG Y, et al. Delving into sample loss curve to embrace noisy and imbalanced data[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(6): 7024-7032. 10.1609/aaai.v36i6.20661 |
10 | KIM Y, YIM J, YUN J, et al. NLNL: negative learning for noisy labels[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 101-110. 10.1109/iccv.2019.00019 |
11 | LI J, SOCHER R, HOI S C H. DivideMix: learning with noisy labels as semi-supervised learning[C/OL]// Proceedings of the 2020 International Conference on Learning Representations. [S.l.]: ICLR, 2019[2023-05-01]. . |
12 | BERTHELOT D, CARLINI N, GOODFELLOW I, et al. MixMatch: a holistic approach to semi-supervised learning[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 5049-5059. 10.48550/arXiv.1905.02249 |
13 | KARIM N, RIZVE M N, RAHNAVARD N, et al. UNICON: combating label noise through uniform selection and contrastive learning[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9676-9686. 10.1109/cvpr52688.2022.00945 |
14 | ZHANG Z, SABUNCU M. Generalized cross entropy loss for training deep neural networks with noisy labels[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 8792-8802. |
15 | REN M, ZENG W, YANG B, et al. Learning to reweight examples for robust deep learning[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR, 2018: 4334-4343. |
16 | SHU J, XIE Q, YI L, et al. Meta-weight-net: learning an explicit mapping for sample weighting[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 1919-1930. |
17 | HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284. 10.1109/tkde.2008.239 |
18 | JAPKOWICZ N, STEPHEN S. The class imbalance problem: a systematic study[J]. Intelligent Data Analysis, 2002, 6(5): 429-449. 10.3233/ida-2002-6504 |
19 | BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249-259. 10.1016/j.neunet.2018.07.011 |
20 | CAO K, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 1567-1578. |
21 | CUI Y, JIA M, LIN T-Y, et al. Class-balanced loss based on effective number of samples[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9268-9277. 10.1109/cvpr.2019.00949 |
22 | KHAN S H, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3573-3587. 10.1109/tnnls.2017.2732482 |
23 | SHEN L, LIN Z, HUANG Q. Relay backpropagation for effective learning of deep convolutional neural networks[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 467-482. 10.1007/978-3-319-46478-7_29 |
24 | KHAN S, HAYAT M, ZAMIR S W, et al. Striking the right balance with uncertainty[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 103-112. 10.1109/cvpr.2019.00019 |
25 | HUANG C, LI Y, LOY C C, et al. Deep imbalanced learning for face recognition and attribute prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(11): 2781-2794. 10.1109/tpami.2019.2914680 |
26 | WANG Y-X, RAMANAN D, HEBERT M. Learning to model the tail[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 7032-7042. |
27 | CUI Y, SONG Y, SUN C, et al. Large scale fine-grained categorization and domain-specific transfer learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2018: 4109-4118. 10.1109/cvpr.2018.00432 |
28 | LIU Z, MIAO Z, ZHAN X, et al. Large-scale long-tailed recognition in an open world[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2537-2546. 10.1109/cvpr.2019.00264 |
29 | ZHOU B, CUI Q, WEI X-S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9719-9728. 10.1109/cvpr42600.2020.00974 |
30 | WEI C, SOHN K, MELLINA C, et al. CReST: a class-rebalancing self-training framework for imbalanced semi-supervised learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10857-10866. 10.1109/cvpr46437.2021.01071 |
31 | LEE H, SHIN S, KIM H. ABC: auxiliary balanced classifier for class-imbalanced semi-supervised learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 7082-7094. |
32 | KARTHIK S, REVAUD J, CHIDLOVSKII B. Learning from long-tailed data with noisy labels [EB/OL]. (2021-08-25) [2022-12-24]. . |
33 | XIANG T, ZHANG C, SONG Y, et al. Walk in the cloud: learning curves for point clouds shape analysis[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 915-924. 10.1109/iccv48922.2021.00095 |
34 | WEI T, SHI J-X, TU W-W, et al. Robust long-tailed learning under label noise [EB/OL]. [2022-12-14]. . |
35 | CAO K, CHEN Y, LU J, et al. Heteroskedastic and imbalanced deep learning with adaptive regularization[C/OL]// Proceedings of the 2020 International Conference on Learning Representations. [2023-04-15]. . |
36 | XIA X, LIU T, HAN B, et al. Sample selection with uncertainty of losses for learning with noisy labels[C/OL]// Proceedings of the 2021 International Conference on Learning Representations. [2023-03-22]. . 10.1109/iccv51070.2023.00176 |
37 | ZHANG Y, LU Y, HAN B, et al. Combating noisy-labeled and imbalanced data by two stage bi-dimensional sample selection[EB/OL]. [2023-02-19]. . |
38 | SOHN K, BERTHELOT D, LI C-L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 596-608. |
39 | KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny image[R/OL]. Toronto: University of Toronto, Computer Science Department, 2009 [2023-05-01]. . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||