[1] THEODORIDIS S, KOUTROUMBAS K. Pattern recognition [M]. 4th ed. New York: Academic Press, 2009: 261-322. [2] SUN J. Modern pattern recognition [M]. 2nd ed. Beijing: Higher Education Press, 2008: 272-337. (孙即祥.现代模式识别[M].2版.北京:高等教育出版社,2008:272-337.) [3] KOHAVI R, JOHN G H. Wrappers for feature subset selection [J]. Artificial Intelligence, 1997, 97(1/2): 273-324. [4] PAWLAK Z. Rough sets [J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341-356. [5] KOMOROWSKI J, PAWLAK Z, POLKOWSKI L, et al. Rough sets: a tutorial [M]//Rough fuzzy hybridization: a new trend in decision-making. Berlin: Springer, 1999: 3-98. [6] GUO N, SUN X, LIN H, et al. Malware detection based on attributes order reduction [J]. Journal of Computer Applications, 2011, 31(4): 1006-1009. (郭宁,孙晓妍,林和,等.基于属性序约简的恶意代码检测[J].计算机应用,2011,31(4):1006-1009.) [7] WROBLEWSKI J. Finding minimal reducts using genetic algorithms, ICS Research report 16/95 [R]. Warsaw: Warsaw University of Technology, 1995: 186-189. [8] MA X, WANG G,YU H. Heuristic method to attribute reduction for decision region distribution preservation [J]. Journal of Software, 2014,25(8):1761-1780. (马希骜,王国胤,于洪.决策域分布保持的启发式属性约简方法[J].软件学报,2014,25(8):1761-1780.) [9] GAO C, MIAO D, ZHANG Z, et al. Rough set based attribute reduction with consistent confidence [J]. Journal of Computer Applications, 2012, 32(4): 1067-1069. (高灿,苗夺谦,张志飞,等.粗糙集信度一致属性约简[J].计算机应用,2012,32(4):1067-1069.) [10] HU X, CERCONE N. Learning in relational databases: a rough set approach [J]. Computational Intelligence, 1995, 11(2): 323-338. [11] WANG X, YANG J, TENG X, et al. Feature selection based on rough sets and particle swarm optimization [J]. Pattern Recognition Letters, 2007, 28(4): 459-471. [12] XIAO D, WANG G, HU F. Fast paralle attribute reduction algorithm based on rough set theory [J]. Computer Science, 2009, 36(3): 208-211. (肖大伟,王国胤,胡峰.一种基于粗糙集理论的快速并行属性约简算法[J].计算机科学,2009,36(3):208-211.) [13] HU F, WANG G, HUANG H, et al. Incremental attribute reduction based on elementary sets [C]//RSFDGrC 2005: Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, LNCS 3641. Berlin: Springer, 2005: 185-193. [14] LIANG J, WANG F, DANG C, et al. A group incremental approach to feature selection applying rough set technique [J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 294-308. [15] LIANG J, WANG F, DANG C, et al. An efficient rough feature selection algorithm with a multi-granulation view [J]. International Journal of Approximate Reasoning, 2012, 53(6):912-926. [16] XU Z, ZHANG C, ZHANG S, et al. Efficient attribute reduction based on discernibility matrix [M]//RSKT 2007: Proceedings of the Second International Conference on Rough Sets and Knowledge Technology, LNCS 4481. Berlin: Springer, 2007: 13-21. [17] KIRA K, RENDELL L. The feature selection problem: traditional methods and a new algorithm [C]//AAAI 1992: Proceedings of the Tenth National Conference on Artificial Intelligence. Menlo Park: AAAI Press, 1992: 129-134 [18] University of California, Irvine. Center for Machine Learning and Intelligent Systems, UCI Machine Learning Repository [DB/OL]. [2015-01-12]. http://archive.ics.uci.edu/ml/datasets.html. [19] ROWEIS S. Data for Matlab hackers [DB/OL]. [2015-01-12]. http://www.cs.nyu.edu/~roweis/data.html. |