Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3121-3128.DOI: 10.11772/j.issn.1001-9081.2022101543
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Lei MA1, Chuan LUO1(), Tianrui LI2, Hongmei CHEN2
Received:
2022-10-17
Revised:
2022-11-28
Accepted:
2022-11-30
Online:
2023-10-07
Published:
2023-10-10
Contact:
Chuan LUO
About author:
MA Lei, born in 1997, M. S. candidate. His research interests include feature selection.Supported by:
通讯作者:
罗川
作者简介:
马磊(1997—),男(回族),四川成都人,硕士研究生,主要研究方向:特征选择基金资助:
CLC Number:
Lei MA, Chuan LUO, Tianrui LI, Hongmei CHEN. Fuzzy-rough set based unsupervised dynamic feature selection algorithm[J]. Journal of Computer Applications, 2023, 43(10): 3121-3128.
马磊, 罗川, 李天瑞, 陈红梅. 基于模糊粗糙集的无监督动态特征选择算法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3121-3128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022101543
数据集 | 样本数 | 特征数 | 聚类数 | 来源 |
---|---|---|---|---|
Olive Oil | 30 | 570 | 4 | TSC |
SCADI | 70 | 205 | 7 | UCI |
SAP | 131 | 21 | 3 | UCI |
Divorce | 170 | 54 | 2 | UCI |
Sonar | 208 | 60 | 2 | UCI |
Ionosphere | 351 | 33 | 2 | UCI |
Wdbc | 569 | 30 | 2 | UCI |
German | 1 000 | 20 | 2 | UCI |
Waveform | 5 000 | 21 | 3 | UCI |
Tab. 1 Dataset details
数据集 | 样本数 | 特征数 | 聚类数 | 来源 |
---|---|---|---|---|
Olive Oil | 30 | 570 | 4 | TSC |
SCADI | 70 | 205 | 7 | UCI |
SAP | 131 | 21 | 3 | UCI |
Divorce | 170 | 54 | 2 | UCI |
Sonar | 208 | 60 | 2 | UCI |
Ionosphere | 351 | 33 | 2 | UCI |
Wdbc | 569 | 30 | 2 | UCI |
German | 1 000 | 20 | 2 | UCI |
Waveform | 5 000 | 21 | 3 | UCI |
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | |||
---|---|---|---|---|---|---|---|
运行时间/s | 运行时间/s | TRR/% | 运行时间/s | TRR/% | 运行时间/s | TRR/% | |
Olive Oil | 0.001 1 | 0.496 6 | 0.21 | 7.739 2 | 0.01 | 50.603 8 | 0.00 |
SCADI | 0.005 5 | 0.484 2 | 1.13 | 134.344 8 | 0.00 | 21.391 2 | 0.03 |
SAP | 0.001 8 | 0.035 7 | 5.07 | 1.457 5 | 0.12 | 1.009 1 | 0.18 |
Divorce | 0.004 1 | 0.186 5 | 2.19 | 17.875 9 | 0.02 | 10.665 2 | 0.04 |
Sonar | 0.005 7 | 0.294 4 | 1.92 | 11.802 5 | 0.05 | 48.826 6 | 0.01 |
Ionosphere | 0.022 1 | 0.300 4 | 7.37 | 32.265 6 | 0.07 | 111.249 9 | 0.02 |
Wdbc | 0.039 4 | 0.704 8 | 5.60 | 25.644 7 | 0.15 | 98.890 0 | 0.04 |
German | 0.115 0 | 1.749 1 | 6.57 | 98.004 1 | 0.12 | 58.844 5 | 0.20 |
Waveform | 4.086 7 | 58.758 3 | 6.96 | — | — | — | — |
Tab. 2 Comparison of running time of different algorithms on basic datasets with different scales
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | |||
---|---|---|---|---|---|---|---|
运行时间/s | 运行时间/s | TRR/% | 运行时间/s | TRR/% | 运行时间/s | TRR/% | |
Olive Oil | 0.001 1 | 0.496 6 | 0.21 | 7.739 2 | 0.01 | 50.603 8 | 0.00 |
SCADI | 0.005 5 | 0.484 2 | 1.13 | 134.344 8 | 0.00 | 21.391 2 | 0.03 |
SAP | 0.001 8 | 0.035 7 | 5.07 | 1.457 5 | 0.12 | 1.009 1 | 0.18 |
Divorce | 0.004 1 | 0.186 5 | 2.19 | 17.875 9 | 0.02 | 10.665 2 | 0.04 |
Sonar | 0.005 7 | 0.294 4 | 1.92 | 11.802 5 | 0.05 | 48.826 6 | 0.01 |
Ionosphere | 0.022 1 | 0.300 4 | 7.37 | 32.265 6 | 0.07 | 111.249 9 | 0.02 |
Wdbc | 0.039 4 | 0.704 8 | 5.60 | 25.644 7 | 0.15 | 98.890 0 | 0.04 |
German | 0.115 0 | 1.749 1 | 6.57 | 98.004 1 | 0.12 | 58.844 5 | 0.20 |
Waveform | 4.086 7 | 58.758 3 | 6.96 | — | — | — | — |
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | |||
---|---|---|---|---|---|---|---|
运行时间/s | 运行时间/s | TRR/% | 运行时间/s | TRR/% | 运行时间/s | TRR/% | |
OliveOil | 0.003 1 | 0.852 2 | 0.37 | 12.747 0 | 0.02 | 84.319 0 | 0.00 |
SCADI | 0.011 2 | 0.855 2 | 1.31 | 230.457 1 | 0.00 | 37.209 8 | 0.03 |
SAP | 0.004 7 | 0.049 7 | 9.41 | 2.698 4 | 0.17 | 1.754 5 | 0.27 |
Divorce | 0.009 2 | 0.292 9 | 3.14 | 28.547 7 | 0.03 | 16.738 9 | 0.05 |
Sonar | 0.012 7 | 0.498 5 | 2.54 | 19.326 7 | 0.07 | 82.935 8 | 0.02 |
Ionosphere | 0.024 3 | 0.379 5 | 6.39 | 43.882 4 | 0.06 | 150.410 6 | 0.02 |
Wdbc | 0.060 9 | 0.844 2 | 7.22 | 32.565 8 | 0.19 | 109.570 9 | 0.06 |
German | 0.181 8 | 2.704 0 | 6.72 | 167.698 3 | 0.11 | 97.490 2 | 0.19 |
Waveform | 5.971 3 | 104.561 1 | 5.71 | — | — | — | — |
Tab. 3 Comparison of running time of different algorithms on incremental datasets with different scales
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | |||
---|---|---|---|---|---|---|---|
运行时间/s | 运行时间/s | TRR/% | 运行时间/s | TRR/% | 运行时间/s | TRR/% | |
OliveOil | 0.003 1 | 0.852 2 | 0.37 | 12.747 0 | 0.02 | 84.319 0 | 0.00 |
SCADI | 0.011 2 | 0.855 2 | 1.31 | 230.457 1 | 0.00 | 37.209 8 | 0.03 |
SAP | 0.004 7 | 0.049 7 | 9.41 | 2.698 4 | 0.17 | 1.754 5 | 0.27 |
Divorce | 0.009 2 | 0.292 9 | 3.14 | 28.547 7 | 0.03 | 16.738 9 | 0.05 |
Sonar | 0.012 7 | 0.498 5 | 2.54 | 19.326 7 | 0.07 | 82.935 8 | 0.02 |
Ionosphere | 0.024 3 | 0.379 5 | 6.39 | 43.882 4 | 0.06 | 150.410 6 | 0.02 |
Wdbc | 0.060 9 | 0.844 2 | 7.22 | 32.565 8 | 0.19 | 109.570 9 | 0.06 |
German | 0.181 8 | 2.704 0 | 6.72 | 167.698 3 | 0.11 | 97.490 2 | 0.19 |
Waveform | 5.971 3 | 104.561 1 | 5.71 | — | — | — | — |
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | ||||
---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 4.74 | 4.81 | 4.74 | 4.81 | 1.10 | 1.00 | 1.00 | 1.00 |
SCADI | 17.10 | 17.36 | 17.10 | 17.36 | 16.94 | 16.47 | 1.00 | 1.00 |
SAP | 7.77 | 9.17 | 7.77 | 9.17 | 7.88 | 9.77 | 1.00 | 1.00 |
Divorce | 9.89 | 10.23 | 9.89 | 10.23 | 10.03 | 10.47 | 1.00 | 1.00 |
Sonar | 8.14 | 8.14 | 8.14 | 8.14 | 4.76 | 3.91 | 3.06 | 3.00 |
Ionosphere | 10.06 | 11.10 | 10.06 | 11.10 | 12.00 | 14.15 | 12.48 | 14.62 |
Wdbc | 7.94 | 8.54 | 7.94 | 8.54 | 5.20 | 4.68 | 3.31 | 3.00 |
German | 9.46 | 11.08 | 9.46 | 11.08 | 9.47 | 11.15 | 1.00 | 1.00 |
Waveform | 9.22 | 11.98 | 9.22 | 11.98 | — | — |
Tab. 4 Comparison of feature subset size of different algorithms
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | ||||
---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 4.74 | 4.81 | 4.74 | 4.81 | 1.10 | 1.00 | 1.00 | 1.00 |
SCADI | 17.10 | 17.36 | 17.10 | 17.36 | 16.94 | 16.47 | 1.00 | 1.00 |
SAP | 7.77 | 9.17 | 7.77 | 9.17 | 7.88 | 9.77 | 1.00 | 1.00 |
Divorce | 9.89 | 10.23 | 9.89 | 10.23 | 10.03 | 10.47 | 1.00 | 1.00 |
Sonar | 8.14 | 8.14 | 8.14 | 8.14 | 4.76 | 3.91 | 3.06 | 3.00 |
Ionosphere | 10.06 | 11.10 | 10.06 | 11.10 | 12.00 | 14.15 | 12.48 | 14.62 |
Wdbc | 7.94 | 8.54 | 7.94 | 8.54 | 5.20 | 4.68 | 3.31 | 3.00 |
German | 9.46 | 11.08 | 9.46 | 11.08 | 9.47 | 11.15 | 1.00 | 1.00 |
Waveform | 9.22 | 11.98 | 9.22 | 11.98 | — | — |
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 71.9 | 74.3 | 71.9 | 74.3 | 42.6 | 44.2 | 52.7 | 42.8 | 83.3 | 83.3 |
SCADI | 73.7 | 74.4 | 73.7 | 74.4 | 77.1 | 76.2 | 45.1 | 45.0 | 80.8 | 80.8 |
SAP | 43.1 | 43.3 | 43.1 | 43.3 | 43.5 | 43.4 | 42.9 | 41.8 | 43.7 | 42.1 |
Divorce | 97.7 | 97.7 | 97.7 | 97.7 | 97.7 | 97.8 | 91.7 | 89.1 | 97.6 | 97.7 |
Sonar | 78.0 | 76.9 | 78.0 | 76.9 | 61.5 | 58.7 | 60.4 | 62.2 | 83.8 | 85.3 |
Ionosphere | 86.7 | 87.5 | 86.7 | 87.5 | 86.1 | 86.3 | 87.0 | 86.5 | 85.8 | 85.4 |
Wdbc | 94.3 | 94.6 | 94.3 | 94.6 | 85.9 | 83.6 | 76.0 | 72.0 | 95.3 | 96.2 |
German | 90.5 | 90.2 | 90.5 | 90.2 | 88.7 | 90.0 | 80.0 | 79.4 | 69.1 | 70.6 |
Waveform | 72.0 | 76.2 | 72.0 | 76.2 | — | — | 73.1 | 78.2 |
Tab. 5 Comparison of classification accuracy of different algorithms under KNN
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 71.9 | 74.3 | 71.9 | 74.3 | 42.6 | 44.2 | 52.7 | 42.8 | 83.3 | 83.3 |
SCADI | 73.7 | 74.4 | 73.7 | 74.4 | 77.1 | 76.2 | 45.1 | 45.0 | 80.8 | 80.8 |
SAP | 43.1 | 43.3 | 43.1 | 43.3 | 43.5 | 43.4 | 42.9 | 41.8 | 43.7 | 42.1 |
Divorce | 97.7 | 97.7 | 97.7 | 97.7 | 97.7 | 97.8 | 91.7 | 89.1 | 97.6 | 97.7 |
Sonar | 78.0 | 76.9 | 78.0 | 76.9 | 61.5 | 58.7 | 60.4 | 62.2 | 83.8 | 85.3 |
Ionosphere | 86.7 | 87.5 | 86.7 | 87.5 | 86.1 | 86.3 | 87.0 | 86.5 | 85.8 | 85.4 |
Wdbc | 94.3 | 94.6 | 94.3 | 94.6 | 85.9 | 83.6 | 76.0 | 72.0 | 95.3 | 96.2 |
German | 90.5 | 90.2 | 90.5 | 90.2 | 88.7 | 90.0 | 80.0 | 79.4 | 69.1 | 70.6 |
Waveform | 72.0 | 76.2 | 72.0 | 76.2 | — | — | 73.1 | 78.2 |
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 73.3 | 76.7 | 73.3 | 76.7 | 45.1 | 47.1 | 56.6 | 52.1 | 24.1 | 4.3 |
SCADI | 74.3 | 75.5 | 74.3 | 75.5 | 78.1 | 77.0 | 44.8 | 44.3 | 81.5 | 82.9 |
SAP | 45.8 | 45.2 | 45.8 | 45.2 | 45.6 | 45.5 | 40.9 | 39.0 | 46.5 | 47.7 |
Divorce | 97.7 | 97.8 | 97.7 | 97.8 | 97.5 | 97.5 | 91.5 | 88.8 | 97.5 | 97.2 |
Sonar | 67.3 | 65.5 | 67.3 | 65.5 | 59.2 | 58.7 | 60.7 | 60.9 | 67.7 | 68.5 |
Ionosphere | 81.0 | 82.3 | 81.0 | 82.3 | 81.9 | 83.3 | 84.9 | 84.2 | 81.3 | 81.9 |
Wdbc | 92.6 | 92.6 | 92.6 | 92.6 | 82.9 | 80.2 | 75.6 | 70.3 | 92.7 | 93.1 |
German | 87.7 | 88.6 | 87.7 | 88.6 | 85.9 | 88.2 | 77.6 | 79.3 | 72.2 | 73.1 |
Waveform | 74.3 | 78.2 | 74.3 | 78.2 | — | — | — | — | 75.5 | 79.8 |
Tab. 6 Comparison of classification accuracy of different algorithms under NB
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 73.3 | 76.7 | 73.3 | 76.7 | 45.1 | 47.1 | 56.6 | 52.1 | 24.1 | 4.3 |
SCADI | 74.3 | 75.5 | 74.3 | 75.5 | 78.1 | 77.0 | 44.8 | 44.3 | 81.5 | 82.9 |
SAP | 45.8 | 45.2 | 45.8 | 45.2 | 45.6 | 45.5 | 40.9 | 39.0 | 46.5 | 47.7 |
Divorce | 97.7 | 97.8 | 97.7 | 97.8 | 97.5 | 97.5 | 91.5 | 88.8 | 97.5 | 97.2 |
Sonar | 67.3 | 65.5 | 67.3 | 65.5 | 59.2 | 58.7 | 60.7 | 60.9 | 67.7 | 68.5 |
Ionosphere | 81.0 | 82.3 | 81.0 | 82.3 | 81.9 | 83.3 | 84.9 | 84.2 | 81.3 | 81.9 |
Wdbc | 92.6 | 92.6 | 92.6 | 92.6 | 82.9 | 80.2 | 75.6 | 70.3 | 92.7 | 93.1 |
German | 87.7 | 88.6 | 87.7 | 88.6 | 85.9 | 88.2 | 77.6 | 79.3 | 72.2 | 73.1 |
Waveform | 74.3 | 78.2 | 74.3 | 78.2 | — | — | — | — | 75.5 | 79.8 |
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 59.7 | 62.4 | 59.7 | 62.4 | 54.4 | 54.7 | 54.7 | 46.0 | 68.3 | 72.3 |
SCADI | 70.8 | 72.9 | 70.8 | 72.9 | 78.8 | 79.9 | 44.8 | 44.6 | 78.8 | 79.9 |
SAP | 43.6 | 42.8 | 43.6 | 42.8 | 44.0 | 42.6 | 43.6 | 43.8 | 43.2 | 41.1 |
Divorce | 95.0 | 95.2 | 95.0 | 95.2 | 94.7 | 94.5 | 91.4 | 89.0 | 96.3 | 96.7 |
Sonar | 70.0 | 68.0 | 70.0 | 68.0 | 62.5 | 63.0 | 62.8 | 63.8 | 72.9 | 74.4 |
Ionosphere | 86.8 | 87.5 | 86.8 | 87.5 | 87.2 | 87.9 | 89.0 | 88.9 | 87.9 | 89.1 |
Wdbc | 92.3 | 92.8 | 92.3 | 92.8 | 85.1 | 84.4 | 76.3 | 71.6 | 92.5 | 93.1 |
German | 95.2 | 96.6 | 95.2 | 96.6 | 93.7 | 96.6 | 80.1 | 79.4 | 71.1 | 72.2 |
Waveform | 72.0 | 74.7 | 72.0 | 74.7 | — | — | — | — | 72.6 | 76.1 |
Tab. 7 Comparison of classification accuracy of different algorithms under CART
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 59.7 | 62.4 | 59.7 | 62.4 | 54.4 | 54.7 | 54.7 | 46.0 | 68.3 | 72.3 |
SCADI | 70.8 | 72.9 | 70.8 | 72.9 | 78.8 | 79.9 | 44.8 | 44.6 | 78.8 | 79.9 |
SAP | 43.6 | 42.8 | 43.6 | 42.8 | 44.0 | 42.6 | 43.6 | 43.8 | 43.2 | 41.1 |
Divorce | 95.0 | 95.2 | 95.0 | 95.2 | 94.7 | 94.5 | 91.4 | 89.0 | 96.3 | 96.7 |
Sonar | 70.0 | 68.0 | 70.0 | 68.0 | 62.5 | 63.0 | 62.8 | 63.8 | 72.9 | 74.4 |
Ionosphere | 86.8 | 87.5 | 86.8 | 87.5 | 87.2 | 87.9 | 89.0 | 88.9 | 87.9 | 89.1 |
Wdbc | 92.3 | 92.8 | 92.3 | 92.8 | 85.1 | 84.4 | 76.3 | 71.6 | 92.5 | 93.1 |
German | 95.2 | 96.6 | 95.2 | 96.6 | 93.7 | 96.6 | 80.1 | 79.4 | 71.1 | 72.2 |
Waveform | 72.0 | 74.7 | 72.0 | 74.7 | — | — | — | — | 72.6 | 76.1 |
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 17.2 | 17.5 | 17.3 | 17.5 | 4.2 | 4.0 | 3.2 | 2.8 | 1 178.8 | 1 652.5 |
SCADI | -2.5E+9 | -1.1E+9 | -2.5E+9 | -1.1E+9 | -1.1E+9 | -3.6E+9 | 6.4 | -4.0E+8 | -3.1E+10 | -4.6E+10 |
SAP | -9.5 | -11.4 | -9.5 | -11.4 | -10.0 | -12.9 | -0.4 | -1.4 | -6.2 | -8.7 |
Divorce | -12.5 | -12.7 | -12.5 | -12.7 | -13.0 | -13.7 | -1.5 | -1.5 | -31.8 | -42.5 |
Sonar | 7.3 | 7.7 | 7.3 | 7.7 | 12.1 | 12.5 | 7.6 | 7.1 | 35.8 | 52.1 |
Ionosphere | -6.4 | -7.0 | -6.4 | -7.0 | -7.6 | -8.9 | -7.7 | -9.2 | -9.8 | -12.1 |
Wdbc | 2.5 | 6.1 | 2.5 | 6.1 | 10.6 | 15.1 | 9.9 | 11.4 | 1.3 | 3.6 |
German | -21.4 | -27.1 | -21.4 | -27.1 | -21.5 | -27.8 | -1.5 | -1.1 | -19.6 | -28.4 |
Waveform | -15.1 | -19.4 | -15.1 | -19.4 | — | — | — | — | -17.8 | -24.8 |
Tab. 8 Comparison of log likelihood of different algorithms under different datasets
数据集 | UDFRFS | UFRFS | FRUAR | SUIFR | RAW2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | 基础 | 增量 | |
Olive Oil | 17.2 | 17.5 | 17.3 | 17.5 | 4.2 | 4.0 | 3.2 | 2.8 | 1 178.8 | 1 652.5 |
SCADI | -2.5E+9 | -1.1E+9 | -2.5E+9 | -1.1E+9 | -1.1E+9 | -3.6E+9 | 6.4 | -4.0E+8 | -3.1E+10 | -4.6E+10 |
SAP | -9.5 | -11.4 | -9.5 | -11.4 | -10.0 | -12.9 | -0.4 | -1.4 | -6.2 | -8.7 |
Divorce | -12.5 | -12.7 | -12.5 | -12.7 | -13.0 | -13.7 | -1.5 | -1.5 | -31.8 | -42.5 |
Sonar | 7.3 | 7.7 | 7.3 | 7.7 | 12.1 | 12.5 | 7.6 | 7.1 | 35.8 | 52.1 |
Ionosphere | -6.4 | -7.0 | -6.4 | -7.0 | -7.6 | -8.9 | -7.7 | -9.2 | -9.8 | -12.1 |
Wdbc | 2.5 | 6.1 | 2.5 | 6.1 | 10.6 | 15.1 | 9.9 | 11.4 | 1.3 | 3.6 |
German | -21.4 | -27.1 | -21.4 | -27.1 | -21.5 | -27.8 | -1.5 | -1.1 | -19.6 | -28.4 |
Waveform | -15.1 | -19.4 | -15.1 | -19.4 | — | — | — | — | -17.8 | -24.8 |
1 | PAWLAK Z. Rough sets[J]. International Journal of Computing and Information Sciences, 1982, 11(5): 341-356. 10.1007/bf01001956 |
2 | DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990, 17(2/3): 191-209. 10.1080/03081079008935107 |
3 | ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353. 10.1016/s0019-9958(65)90241-x |
4 | AN S, LIU J, WANG C, et al. A relative uncertainty measure for fuzzy rough feature selection[J]. International Journal of Approximate Reasoning, 2021, 139: 130-142. 10.1016/j.ijar.2021.09.014 |
5 | CHEN J, MI J, LIN Y. A graph approach for fuzzy-rough feature selection[J]. Fuzzy Sets and Systems, 2020, 391: 96-116. 10.1016/j.fss.2019.07.014 |
6 | YANG X, CHEN H, LI T, et al. A noise-aware fuzzy rough set approach for feature selection[J]. Knowledge-Based Systems, 2022, 250: No.109092. 10.1016/j.knosys.2022.109092 |
7 | 章夏杰,朱敬华,陈杨. Spark下的分布式粗糙集属性约简算法[J]. 计算机应用, 2020, 40(2): 518-523. |
ZHANG X J, ZHU J H, CHEN Y. Distributed rough set attribute reduction algorithm under Spark[J]. Journal of Computer Applications, 2020, 40(2): 518-523. | |
8 | 危前进,魏继鹏,古天龙,等. 粗糙集多目标并行属性约简算法[J]. 软件学报, 2022, 33(7): 2599-2617. |
WEI Q J, WEI J P, GU T L, et al. Multi-objective parallel attribute reduction algorithm in rough set[J]. Journal of Software, 2022, 33(7): 2599-2617. | |
9 | YANG Y, CHEN D, WANG H, et al. Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving[J]. Fuzzy Sets and Systems, 2017, 312: 66-86. 10.1016/j.fss.2016.08.001 |
10 | WAN J, CHEN H, LI T, et al. Dynamic interaction feature selection based on fuzzy rough set[J]. Information Sciences, 2021, 581: 891-911. 10.1016/j.ins.2021.10.026 |
11 | NI P, ZHAO S, WANG X, et al. Incremental feature selection based on fuzzy rough sets[J]. Information Sciences, 2020, 536: 185-204. 10.1016/j.ins.2020.04.038 |
12 | 程玉胜,陈飞,王一宾. 基于粗糙集的数据流多标记分布特征选择[J]. 计算机应用, 2018, 38(11): 3105-3111, 3118. 10.11772/j.issn.1001-9081.2018041275 |
CHENG Y S, CHEN F, WANG Y B. Feature selection for multi-label distribution learning with streaming data based on rough set[J]. Journal of Computer Applications, 2018, 38(11): 3105-3111, 3118. 10.11772/j.issn.1001-9081.2018041275 | |
13 | 曾艺祥,林耀进,范凯钧,等. 基于层次类别邻域粗糙集的在线流特征选择算法[J]. 南京大学学报(自然科学版), 2022, 58(3): 506-518. |
ZENG Y X, LIN Y J, FAN K J, et al. Online streaming feature selection method based on hierarchical class neighborhood rough set[J]. Journal of Nanjing University (Natural Sciences), 2022, 58(3): 506-518. | |
14 | SOLORIO-FERNÁNDEZ S, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F. A review of unsupervised feature selection methods[J]. Artificial Intelligence Review, 2020, 53(2): 907-948. 10.1007/s10462-019-09682-y |
15 | VELAYUTHAM C, THANGAVEL K. Unsupervised quick reduct algorithm using rough set theory[J]. Journal of Electronic Science and Technology, 2011, 9(3): 193-201. |
16 | VELAYUTHAM C, THANGAVEL K. A novel entropy based unsupervised feature selection algorithm using rough set theory[C]// Proceeding of the 2012 International Conference on Advances in Engineering, Science and Management. Piscataway: IEEE, 2012: 156-161. 10.1504/ijcbdd.2012.045949 |
17 | PARTHALÁIN N MAC, JENSEN R. Unsupervised fuzzy-rough set-based dimensionality reduction[J]. Information Sciences, 2013, 229: 106-121. 10.1016/j.ins.2012.12.001 |
18 | YUAN Z, CHEN H, LI T, et al. Unsupervised attribute reduction for mixed data based on fuzzy rough sets[J]. Information Sciences, 2021, 572: 67-87. 10.1016/j.ins.2021.04.083 |
19 | GANIVADA A, RAY S S, PAL S K. Fuzzy rough sets, and a granular neural network for unsupervised feature selection[J]. Neural Networks, 2013, 48: 91-108. 10.1016/j.neunet.2013.07.008 |
20 | BEG I, ASHRAF S. Similarity measures for fuzzy sets[J]. Applied and Computational Mathematics, 2009, 8(2): 192-202. |
21 | PAP E. Pseudo-analysis in engineering decision making[M]// RUDAS I J, FODOR J, KACPRZYK J. Towards Intelligent Engineering and Information Technology, SCI 243. Berlin: Springer, 2009: 3-16. 10.1007/978-3-642-03737-5_1 |
22 | WANG L, PENG L, ZHANG G. Attribute reduction for incomplete and unsupervised data based on fuzzy rough sets[C]// Proceeding of the 16th International Conference on Intelligent Systems and Knowledge Engineering. Piscataway: IEEE, 2021: 674-679. 10.1109/iske54062.2021.9755349 |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[3] | Shuo SUN, Wei ZHANG, Wendi FENG, Yuwei ZHANG. Automatic foreign function interface generation method based on source code analysis [J]. Journal of Computer Applications, 2024, 44(7): 2151-2159. |
[4] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[5] | Lin GAO, Yu ZHOU, Tak Wu KWONG. Evolutionary bi-level adaptive local feature selection [J]. Journal of Computer Applications, 2024, 44(5): 1408-1414. |
[6] | Mingzhu LEI, Hao WANG, Rong JIA, Lin BAI, Xiaoying PAN. Oversampling algorithm based on synthesizing minority class samples using relationship between features [J]. Journal of Computer Applications, 2024, 44(5): 1428-1436. |
[7] | Zihan LIU, Dengwen ZHOU, Yukai LIU. Image super-resolution network based on global dependency Transformer [J]. Journal of Computer Applications, 2024, 44(5): 1588-1596. |
[8] | Lin SUN, Menghan LIU. K-means clustering based on adaptive cuckoo optimization feature selection [J]. Journal of Computer Applications, 2024, 44(3): 831-841. |
[9] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[10] | Shengjie MENG, Wanjun YU, Ying CHEN. Feature selection algorithm for high-dimensional data with maximum correlation and maximum difference [J]. Journal of Computer Applications, 2024, 44(3): 767-771. |
[11] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[12] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[13] | Wanting JI, Wenyi LU, Yuhang MA, Linlin DING, Baoyan SONG, Haolin ZHANG. Machine reading comprehension event detection based on relation-enhanced graph convolutional network [J]. Journal of Computer Applications, 2024, 44(10): 3288-3293. |
[14] | Tian HE, Zongxin SHEN, Qianqian HUANG, Yanyong HUANG. Adaptive learning-based multi-view unsupervised feature selection method [J]. Journal of Computer Applications, 2023, 43(9): 2657-2664. |
[15] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||