[1] AXELSSON S. Intrusion detection systems: a survey and taxonomy[J]. Computers and Security, 2000, 20(1):676-683. [2] SOMMER R, PAXSON V. Outside the closed world: on using machine learning for network intrusion detection[C]//Proceedings of the 2010 IEEE Symposium on Security and Privacy. Washington, DC: IEEE Computer Society, 2010:305-316. [3] SHAMSHIRBAND S, ANUAR N B, KIAH M L M, et al. An appraisal and design of a multi-Agent system based cooperative wireless intrusion detection computational intelligence technique[J]. Engineering Applications of Artificial Intelligence, 2013, 26(9): 2105-2127. [4] SINGH J, NENE M J. A survey on machine learning techniques for intrusion detection systems[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2013, 12(1): 4349-4355. [5] TSAI C F, HSU Y F, LIN C Y, et al. Intrusion detection by machine learning: a review[J]. Expert Systems with Applications, 2009, 36(10): 11994-12000. [6] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106. [7] KUMAR M, HANUMANTHAPPA M, KUMAR T V S. Intrusion detection system using decision tree algorithm [C]//Proceedings of the 2012 IEEE 14th International Conference on Communication Technology. Piscataway: IEEE Press,2012:629-634. [8] JIANG L, CAI Z, ZHANG H, et al. Naive-Bayes text classifiers: a locally weighted learning approach[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2013, 25(2):273-286. [9] DESHMUKH D H, GHORPADE T, PADIYA P. Intrusion detection system by improved preprocessing methods and Naive Bayes classifier using NSL-KDD 99 Dataset[C]//Proceedings of the 2014 International Conference on Electronics and Communication Systems. Piscataway: IEEE Press,2014:1-7. [10] KOHAVI R. Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid[EB/OL]. [2015-01-10]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.9093&rep=rep1&type=pdf. [11] JIANG L, LI C, WU J, et al. A combined classification algorithm based on C4.5 and NB[C]//ISICA 2008: Proceedings of the Third International Symposium on Advances in Computation and Intelligence, LNCV 5370. Berlin: Springer-Verlag, 2008: 350-359. [12] GONDY L A, THOMAS C R B, BAYES N. Programs for machine learning[EB/OL].[2014-10-10]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.5894. [13] SABHNANI M, SERPEN G. Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context[EB/OL]. [2014-10-10]. http://neuro.bstu.by/ai/To-dom/My_research/Papers-0/For-research/D-mining/Anomaly-D/KDD-cup-99/mlmta03.pdf. |