[1] 孔令智. 基于网络异常的入侵检测算法研究[D]. 北京:北京交通大学,2017:15-16. (KONG L Z. Research on intrusion detection algorithm based on network anomaly[D]. Beijing:Beijing Jiaotong University,2017:15-16.) [2] 沈学利, 覃淑娟. 基于SMOTE和深度信念网络的异常检测[J]. 计算机应用,2018,38(7):1941-1945.(SHEN X L,QIN S J. Anomaly detection based on synthetic minority oversampling technique and deep belief network[J]. Journal of Computer Applications,2018,38(7):1941-1945.) [3] YIN C,ZHU Y,FEI J,et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access,2017,5:21954-21961. [4] LIAO Y,VEMURI V R. Use of k-nearest neighbor classifier for intrusion detection[J]. Computers and Security,2002,21(5):439-448. [5] MUKKAMALA S, JANOSKI G, SUNG A. Intrusion detection using neural networks and support vector machines[C]//Proceedings of the 2002 International Joint Conference on Neural Networks. Piscataway:IEEE,2002:1702-1707. [6] SALLAY H,AMMAR A,SAAD M B,et al. A real time adaptive intrusion detection alert classifier for high speed networks[C]//Proceedings of the IEEE 12th International Symposium on Network Computing and Applications. Piscataway:IEEE,2013:73-80. [7] HASAN M A M,NASSER M,PAL B,et al. Support vector machine and random forest modeling for Intrusion Detection System (IDS)[J]. Journal of Intelligent Learning Systems and Applications,2014,6(1):45-52. [8] JING D,CHEN H B. SVM based network intrusion detection for the UNSW-NB15 dataset[C]//Proceedings of the IEEE 13th International Conference on ASIC. Piscataway:IEEE,2019:1-4. [9] CHANG H,LEE Y,YOON B,et al. Dynamic near-term traffic flow prediction:system-oriented approach based on past experiences[J]. IET Intelligent Transport Systems,2012,6(3):292-305. [10] TAHIR H M,HASAN W,SAID A M,et al. Hybrid machine learning technique for intrusion detection system[EB/OL]//Proceedings of the 2015 International Conference on Computing and Informatics.[2020-03-20]. https://www.researchgate.net/publication/283089120_HYBRID_MACHINE_LEARNING_TECHNIQUE_FOR_INTRUSION_DETECTION_SYSTEM. [11] HU W, GAO J, WANG Y, et al. Online Adaboost-based parameterized methods for dynamic distributed network intrusion detection[J]. IEEE Transactions on Cybernetics,2013,44(1):66-82. [12] ZHANG J,ZULKERNINE M,HAQUE A. Random-forests-based network intrusion detection systems[J]. IEEE Transactions on Systems,2008,38(5):649-659. [13] JANARTHANAN T,ZARGARI S. Feature selection in UNSWNB15 and KDDCUP' 99 datasets[C]//Proceedings of the IEEE 26th International Symposium on Industrial Electronics. Piscataway:IEEE,2017:1881-1886. [14] AL-YASEEN W L,OTHMAN Z A,NAZRI M Z A. Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system[J]. Expert Systems with Applications,2017,67:296-303. [15] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. [16] YAO Y,WEI Y,GAO F,et al. Anomaly intrusion detection approach using hybrid MLP/CNN neural network[C]//Proceedings of the 6th International Conference on Intelligent Systems Design and Applications. Piscataway:IEEE,2006:1095-1102. [17] HAO Y,SHENG Y,WANG J. Variant gated recurrent units with encoders to preprocess packets for payload-aware intrusion detection[J]. IEEE Access,2019,7:49985-49998. [18] YANG J B,NGUYEN M N,SAN P P,et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2015:3995-4001. [19] WANG W,SHENG Y,WANG J,et al. HAST-IDS:learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access,2018,6:1792-1806. [20] XU C,SHEN J,DU X,et al. An intrusion detection system using a deep neural network with gated recurrent units[J]. IEEE Access,2018,6:48697-48707. [21] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2020-03-21]. https://arxiv.org/pdf/1511.07122v2.pdf. [22] PEARLMUTTER B A. Gradient calculations for dynamic recurrent neural networks:a survey[J]. IEEE Transactions on Neural Networks,1995,6(5):1212-1228. [23] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks,1994,5(2):157-166. [24] DHANABAL L,SHANTHARAJAH S P. A study on NSL-KDD data set for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6):446-452. [25] SHONE N,NGOC T N,PHAI V D,et al. A deep learning approach to network intrusion detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2018,2(1):41-50. [26] AKYOL A,HACIBEYOĞLU M,KARLIK B. Design of multilevel hybrid classifier with variant feature sets for intrusion detection system[J]. IEICE Transaction on Information and Systems,2016, E99. D (7):1810-1821. [27] MA T,WANG F,CHENG J,et al. A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks[J]. Sensors,2016,16(10):No. 1701. [28] PARSAEI M R,ROSTAMI S M,JAVIDAN R. A hybrid data mining approach for intrusion detection on imbalanced NSL-KDD data set[J]. International Journal of Advanced Computer Science and Applications,2016,7(6):20-25. [29] DIRO A A, CHILAMKURTI N. Distributed attack detection scheme using deep learning approach for Internet of Tings[J]. Future Generation Computer Systems,2017,82:761-768. [30] ZHANG J,LING Y,FU X,et al. Model of the intrusion detection system based on the integration of spatial-temporal features[J]. Computers and Security,2020,89:No. 101681. |