1 LIUZ, AZARDERAKHSHR, KIMH, et al. Efficient software implementation of ring-LWE encryption on IoT processors[J]. IEEE Transactions on Computers, 2017(Early Access):1-1. 2 潘建国,李豪. 基于实用拜占庭容错的物联网入侵检测方法[J]. 计算机应用, 2019, 39(6):1742-1746. PANJ G, LIH. Intrusion detection approach for IoT based on practical Byzantine fault tolerance[J]. Journal of Computer Applications, 2019, 39(6):1742-1746. 3 刘建. 基于改进神经网络的网络入侵检测[J]. 科技创新与应用, 2018(2):11-12, 14. LIUJ. Network intrusion detection based on improved neural network[J]. Technology Innovation and Application, 2018, 2:11-12, 14. 4 刘达. 基于朴素贝叶斯分类算法的数据库入侵检测系统[J]. 网络空间安全, 2017, 8(8/9):32-34. LIUD. An intrusion detection system based on naive Bayes classifier[J]. Cyberspace Security, 2017, 8(8/9):32-34. 5 MIR A, KHACHANEA. Sensing harmful gases in industries using IOT and WSN[C]// Proceedings of the 4th International Conference on Computing Communication Control and Automation. Piscataway: IEEE, 2018:1-3. 6 阙宏宇,梁波.入侵检测技术网络安全中的具体运用[J]. 电子技术与软件工程,2017(11):205. QUEH Y, LIANGB. Specific application of intrusion detection technology in network security[J]. Electronic Technology and Software Engineering, 2017(11): 205. 7 MODARESH, SALLEHR, MORAVEJOSHARIEHA. Overview of security issues in wireless sensor networks[C]// Proceedings of the 3rd International Conference on Computational Intelligence, Modelling and Simulation. Piscataway: IEEE, 2011: 308-311. 8 KIMD S, NGUYENH N, PARKJ S. Genetic algorithm to improve SVM based network intrusion detection system[C]// Proceedings of the 19th International Conference on Advanced Information Networking and Applications. Piscataway: IEEE, 2005: 155-158. 9 BONTEMPSL, CAOV L, MCDERMOTTJ, et al. Collective anomaly detection based on long short term memory recurrent neural network[C]// Proceedings of the 2016 International Conference on Future Data and Security Engineering, LNCS 10018. Cham: Springer, 2016:141-152. 10 HODOE, BELLEKENSX, HAMILTONA, et al. Threat analysis of IoT networks using artificial neural network intrusion detection system[J]. Tetrahedron Letters, 2017, 42(39):6865-6867. 11 ALMOMANII, AL-KASASBEHB, AL-AKHRASM. WSN-DS: a dataset for intrusion detection systems in wireless sensor networks[J]. Journal of Sensors, 2016, 2016: Article No.4731953. 12 BRIDGESR A, GLASS-VANDERLANT R, IANNACONEM D, et al. A survey of intrusion detection systems leveraging host data[J]. ACM Computing Surveys, 2018, 52(6):Article No.128. 13 CREECHG, HUJ. A semantic approach to host-based intrusion detection systems using contiguous and discontiguous system call patterns[J]. IEEE Transactions on Computers, 2014, 63(4): 807-819. 14 SUBBAB, BISWASS, KARMAKARS. Host based intrusion detection system using frequency analysis of n-gram terms[C]// Proceedings of the 2017 IEEE Region 10 Conference. Piscataway: IEEE, 2017: 2006-2011. 15 YEQ, YANGX, CHENC, et al. River water quality parameters prediction method based on LSTM-RNN model[C]// Proceedings of the 2019 Chinese Control and Decision Conference. Piscataway: IEEE, 2019: 3024-3028. |