[1] ZHU X, GHAHRAMANI Z. Learning from labeled and unlabeled data with label propagation[EB/OL].[2016-12-14]. http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf. [2] ZHU X, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions[C]//Proceedings of the 20th International Conference on Machine Learning. Menlo Park, CA:AAAI Press, 2003:912-919. [3] ZHOU D, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2003:321-328. [4] KIM K H, CHOI S. Label propagation through minimax paths for scalable semi-supervised learning[J]. Pattern Recognition Letters, 2014, 45(1):17-25. [5] 汪西莉,蔺洪帅.最小代价路径标签传播算法[J].计算机学报,2016,39(7):1407-1418.(WANG X L, LIN H S. Label propagation through minimum cost path[J]. Chinese Journal of Computers, 2016,39(7):1407-1418.) [6] 晋小玲.图转导理论的研究与应用[D].北京:华北电力大学,2011:6-15.(JIN X L. Research and application of graphic conduction theory[D]. Beijing:North China Electric Power University, 2011:6-15.) [7] KUMAR D M, PRASHANTH K, PERURU P K, et al. A novel technique for edge detection using Gabor transform and k-means with FCM algorithms[M]//Emerging Trends in Electrical, Communications and Information Technologies, LNEE 394. Berlin:Springer, 2017:273-280. [8] TANHA J, SOMEREN M V, AFSARMANESH H. Semi-supervised self-training for decision tree classifiers[J]. International Journal of Machine Learning & Cybernetics, 2017, 8(1):355-370. [9] KIM K I, TOMPKIN J, PFISTER H, et al. Semi-supervised learning with explicit relationship regularization[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:2188-2196. [10] 白艺娜.基于图的半监督图像分类[D].西安:陕西师范大学,2014:10-17.(BAI Y N. Semi-supervised image classification based on graph[D]. Xi'an:Shaanxi Normal University, 2014:10-17.) [11] 陈永健.半监督支持向量机分类方法研究[D].西安:陕西师范大学,2014:17-18.(CHEN Y J. Research on classification method of semi-supervised support vector machine[D]. Xi'an:Shaanxi Normal University, 2014:17-18.) [12] SONG W, LI S, KANG X, et al. Hyperspectral image classification based on KNN sparse representation[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2016:2411-2414. [13] JING L, YANG L, YU J, et al. Semi-supervised low-rank mapping learning for multi-label classification[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1483-1491. [14] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization:a geometric framework for learning from examples[J]. Journal of Machine Learning Research, 2004, 7(1):2399-2434. [15] HUANG Q, MAO J, LIU Y. An improved grid search algorithm of SVR parameters optimization[C]//Proceedings of the 2012 IEEE 14th International Conference on Communication Technology. Piscataway, NJ:IEEE, 2013:1022-1026. [16] PONTES F J, AMORIM G F, BALESTRASSI P P, et al. Design of experiments and focused grid search for neural network parameter optimization[J]. Neurocomputing, 2016, 186:22-34. [17] FU W, LI S, FANG L. Spectral-spatial hyperspectral image classification via superpixel merging and sparse representation[C]//Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2015:4971-4974. |