Journal of Computer Applications ›› 2016, Vol. 36 ›› Issue (7): 1918-1922.DOI: 10.11772/j.issn.1001-9081.2016.07.1918

Previous Articles     Next Articles

Image retrieval method based on new space relationship feature

GUO Qian1, YANG Hongju1,2, LIANG Xinyan1,2   

  1. 1. School of Computer and Information Technology, Shanxi University, Taiyuan Shanxi 030006, China;
    2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education (Shanxi University), Taiyuan Shanxi 030006, China
  • Received:2015-12-02 Revised:2016-03-16 Online:2016-07-10 Published:2016-07-14
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61573229), the Research Fund for the Doctoral Program of Higher Education (20121401120015) and[BP(]Provincial Basic Research Plan Project[BP)]Shanxi Province Basic Research Plan Project (2015011048).

基于新的空间关系特征的图像检索方法

郭倩1, 杨红菊1,2, 梁新彦1,2   

  1. 1. 山西大学 计算机与信息技术学院, 太原 030006;
    2. 计算智能与中文信息处理教育部重点实验室(山西大学), 太原 030006
  • 通讯作者: 杨红菊
  • 作者简介:郭倩(1990-),女,山西长治人,硕士研究生,主要研究方向:图像检索、机器学习;杨红菊(1975-),女,山西临汾人,副教授,博士,CCF会员,主要研究方向:模式识别、图像检索、图像处理;梁新彦(1989-),男,山西阳泉人,硕士研究生,主要研究方向:粗糙集、多模态数据的知识发现。
  • 基金资助:
    国家自然科学基金资助项目(61573229);高等学校博士学科点专项科研基金资助项目(20121401120015);山西省基础研究计划项目(2015011048)。

Abstract: There is no clear space structure among images, so correlation information of images' space structure could not be utilized effectively. To tackle this problem, a new space relationship feature based image retrieval method was proposed. Firstly, feature vectors were extracted from all images which contain the queried image. And then, all of the every two feature vectors' similarities were calculated to form a similarity matrix. The set of similarity matrix's columns was taken as the new feature vector, namely the new space relationship feature vector, so the former feature vectors could be mapped into a Euclidean space. Finally, similarities were calculated on the new feature space. In this way, the problem of feature vectors' similarity was turned into the new space relationship feature vectors' similarity. The space structure among images was clearer than before on the new feature space, so the accuracy of image retrieval was improved. The experimental results on the Corel database show that the average retrieval precision, recall-precision and visual evaluation metric of the proposed method have advantage over the color histogram in the image retrieval task. The proposed image retrieval method based on the new space relationship feature sufficiently utilizes correlation information of images' space structure and it has better retrieval effect.

Key words: space structure, feature vector, similarity matrix, feature space, image retrieval

摘要: 图像与图像之间没有清晰的空间结构,这样就不能有效利用图像间空间结构上的相关性信息,针对此问题提出一种基于新的空间关系特征的图像检索方法。首先,提取待查询图像在内的全部图像的特征向量。然后,计算特征向量每两个之间的相似性,形成相似性矩阵。将相似性矩阵的列集合作为新特征向量,命名为新的空间关系特征向量,从而将原来的特征向量映射到一个欧氏空间上。最后,在新特征空间上计算相似性,特征向量之间的相似性问题就转化为新的空间关系特征向量之间的相似性问题。在新特征空间上,图像与图像之间的空间结构变得清晰了,有利于图像检索准确度的提高。在Corel数据库上进行实验,所提方法在平均检索查准率、查全率-查准率和可视化评价指标上都优于基于颜色直方图的图像检索方法。结果表明,基于新的空间关系特征的图像检索方法有效利用了图像间空间结构上的相关性信息,具有更好的检索效果。

关键词: 空间结构, 特征向量, 相似性矩阵, 特征空间, 图像检索

CLC Number: