[1] 甘俊英, 何国辉, 何思斌.核零空间线性鉴别分析及其在人脸识别中的应用[J]. 计算机学报, 2014, 37(11): 2374-2379. (GAN J Y, HE G H, HE S B. Kernel null space linear discriminant analysis and its applications in face recognition [J]. Chinese Journal of Computers, 2014, 37(11): 2374-2379.) [2] 史卫亚, 郭跃飞, 薛向阳.一种解决大规模数据集问题的核主成分分析算法[J]. 软件学报, 2009, 20(8): 2153-2159. (SHI W Y, GUO Y F, XUE X Y. Efficient kernel principal component analysis algorithm for large-scale data set [J]. Journal of Software, 2009, 20(8): 2153-2159.) [3] 尹洪涛, 付平, 沙学军.基于DCT和线性判别分析的人脸识别[J]. 电子学报, 2009, 37(10): 2211-2214. (YIN H T, FU P, SHA X J. Face recognition based on DCT and LDA [J]. Acta Electronica Sinica, 2009, 37(10): 2211-2214.) [4] KOIDOVSKY Z, TICHAVSKY P, OJA E. Efficient variant of algorithm FastICA for independent component analysis attaining the Cramér-Rao lower bound [J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1265-1277. [5] WEI J-J, CHANG C-J, CHOU N-K, et al. ECG data compression using truncated singular value decomposition [J]. IEEE Transactions on Information Technology in Biomedicine, 2001, 5(4): 290-299. [6] PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrices, 1994, 5(2): 111-126. [7] CAI D, HE X, HAN J, et al. Graph regularized non-negative matrix factorization for data representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548-1560. [8] 李乐, 章毓晋.非负矩阵分解算法综述[J]. 电子学报, 2008, 36(4): 737-743. (LI L, ZHANG Y J. A survey on algorithms of nonnegative matrix factorization [J]. Acta Electronica Sinica, 2008, 36(4): 737-743.) [9] LIU H, WU Z, LI X, et al. Constrained non-negative matrix factorization for image representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1299-1311. [10] 胡学考, 孙福明, 李豪杰.基于稀疏约束的半监督非负矩阵分解算法[J]. 计算机科学, 2015, 42(7): 280-284. (HU X K, SUN F M, LI H J. Constrained non-negative matrix factorization with sparseness [J]. Computer Science, 2015, 42(7): 280-2284.) [11] 姜小燕, 孙福明, 李豪杰.基于图正则化和稀疏约束的半监督非负矩阵分解[J]. 计算机科学, 2016, 43(7): 77-82, 105. (JIANG X Y, SUN F M, LI H J. Semi-Supervised non-negative matrix factorization based on graph regularization and sparseness constraints [J]. Computer Science, 2016, 43(7): 77-82, 105.) [12] 李振华, 郑琳川.全局和局部特征相融合的人脸识别算法[J]. 计算机工程与应用, 2015, 51(14): 131-135. (LI Z H, ZHENG L C. Image recognition algorithm based on global and local features exaction [J]. Computer Engineering and Applications, 2015, 51(14): 131-135.) [13] 梅蓉.基于特征融合的人脸图像识别方法研究[J]. 河南科技学院学报(自然科学版), 2014(4): 70-74. (MEI R. Study of face recognition method based on feature fusion [J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2014(4): 70-74.) [14] 兰佩, 方超.基于全局与局部特征融合的人脸识别方法[J]. 计算机与现代化, 2014(3): 109-113. (LAN P, FANG C. Face recognition method based on global and local features fusion [J]. Computer and Modernization, 2014(3): 109-113.) [15] RODRIGUEZ J D, PEREZ A, LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 569-575. [16] DING C, LI T, PENG W, et al. Orthogonal nonnegative matrix tri-factorizations for clustering [C]//KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 126-135. [17] CHENG Q, LI S Z, ZHANG H, et al. Learning spatially localized, parts-based representation [C]//CVPR 2001: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2001: 207-212. [18] BERRY M W, PULATOVA S A, STEWART G W. Algorithm 844: computing sparse reduced-rank approximations to sparse matrices [J]. ACM Transactions on Mathematical Software, 2004, 31(2): 252-269. |