[1] LAFFERTY J D, McCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//ICML 2001: Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2001: 282-289. [2] 杨耘, 徐丽. 基于分层特征关联条件随机场的遥感图像分类[J]. 计算机应用, 2014, 34(6): 1741-1745. (YANG Y, XU L. Remote sensing image classification based on conditional random field with hierarchical correlated features[J]. Journal of Computer Applications, 2014, 34(6): 1741-1745.) [3] 李林, 练金, 吴跃, 等. 基于概率图模型的图像整体场景理解综述[J]. 计算机应用, 2014, 34(10): 2913-2921. (LI L, LIAN J, WU Y, et al. The review of image scenario understanding based on graphical models[J]. Journal of Computer Applications, 2014, 34(10): 2913-2921.) [4] 张微, 汪西莉. 基于超像素的条件随机场图像分类[J]. 计算机应用, 2012, 32(5): 1272-1275. (ZHANG W, WANG X L. Image classification based on super-pixel condition random fields[J]. Journal of Computer Applications, 2012, 32(5): 1272-1275.) [5] KOHLIEMAIL P, LADICKY L, TORR P H S. Robust higher order potentials for enforcing label consistency[J]. International Journal of Computer Vision, 2009, 82(3): 302-324. [6] LADICKY L, RUSSELL C, KOHLI P, et al. Associative hierarchical CRFs for object class image segmentation[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway, NJ: IEEE, 2009: 739-746. [7] SHOTTON J, WINN J, ROTHER C, et al. TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context[J]. International Journal of Computer Vision, 2009, 81(1): 2-23. [8] KRÄHENBVHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[EB/OL]. [2017-01-10]. https://arxiv.org/pdf/1210.5644.pdf. [9] VINEET V, WARRELL J, TORR P H S. Filter-based mean-field inference for random fields with higher-order terms and product label-spaces[J]. International Journal of Computer Vision, 2014, 110(3): 290-307. [10] HE X, ZEMEL R S, CARREIRA-PERPI M A. Multiscale conditional random fields for image labeling[C]//CVPR 2004: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2004,2:695-702. [11] ABNEY S, SCHAPIRE R E, SINGER Y. Boosting applied to tagging and PP attachment[EB/OL]. [2017-01-10]. http://www. vinartus. net/spa/98b. pdf. [12] PINTO D, McCALLUM A, WEI X, et al. Table extraction using conditional random fields[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2003: 235-242. [13] TOYODA T, HASEGAWA O. Random field model for integration of local information and global information[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2008, 30(8): 1483. [14] ADAMS A, GELFAND N, DOLSON J, et al. Gaussian KD-trees for fast high-dimensional filtering[J]. ACM Transactions on Graphics, 2009, 28(3): 1-12. [15] KOLLER D, FRIEDMAN N. Probabilistic Graphical Models: Principles and Techniques-Adaptive Computation and Machine Learning[M]. Cambridge: MIT Press, 2009. [16] SMITH S W. The Scientist and Engineer's Guide to Digital Signal Processing[M]. San Diego, CA: California Technical Publishing, 1997: 503-534. [17] PARIS S, DURAND F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision, 2009, 81(1): 24-52. |