[1] CHOBANIAN A V, BAKRIS G, BLACK H, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure[J]. Hypertension, 2003, 42(6): 1206-1252. [2] NⅡRANEN T J, HAVULINNA A S, SALOMAA V, et al. Prediction of blood pressure and blood pressure change with a genetic risk score[J]. Journal of Clinical Hypertension, 2016, 18(3):181-186. [3] SIDERIS C, KALANTARIAN H, NEMATI E, et al. Building continuous arterial blood pressure prediction models using recurrent networks[C]// Proceedings of the 2016 IEEE International Conference on Smart Computing. Piscataway, NJ: IEEE,2016:1-5. [4] LO F P W, LI C X T, WANG J K, et al. Continuous systolic and diastolic blood pressure estimation utilizing long short-term memory network[C]// Proceedings of the 201739th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ: IEEE, 2017:1853-1856. [5] SHRIMANTI G, ANKUR B, NILANJAN R, et al. Continuous blood pressure prediction from pulse transit time using ECG and PPG signals[C]// Proceedings of the 2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference. Piscataway, NJ: IEEE, 2016: 188-191. [6] FOROUZANFAR M, DAIANI H R, GROZA V Z, et al. Feature-based neural network approach for oscillometric blood pressure estimation[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(8):2786-2796. [7] HSIEH Y Y, YU T, WU C D, et al. A linear regression model with dynamic pulse transit time features for noninvasive blood pressure prediction[C]// Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference. Piscataway, NJ: IEEE, 2017:604-607. [8] LIANG B, DUAN K F, XIE Q S, et al. Live demonstration: a support vector machine based hardware platform for blood pressure prediction[C]// Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference. Piscataway, NJ: IEEE, 2017:130. [9] 贵明俊, 张新峰, 张钊, 等. 基于SVR的桡动脉血压预测[J]. 北京生物医学工程, 2016, 35(3):267-271. (GUI M J, ZHANG X F, ZHANG Z, et al. Prediction of radial blood pressure based on SVR[J]. Beijing Biomedical Engineering, 2016, 35(3):267-271.) [10] SIDERIS C, KALANTARIAN H, NEMATI E, et al. Building continuous arterial blood pressure prediction models using recurrent networks[C]// Proceedings of the 2016 IEEE International Conference on Smart Computing. Piscataway, NJ: IEEE, 2016: 1-5. [11] LEE S, PARK C H, CHANG J H. Improved Gaussian mixture regression based on pseudo feature generation using bootstrap in blood pressure estimation[J]. IEEE Transactions on Industrial Informatics, 2015, 12(6):2269-2280. [12] MUAMMAR S, SHIEH J S, FAN S Z, et al. Intermittent blood pressure prediction via multiscale entropy and ensemble artificial neural networks[C]// Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences. Piscataway, NJ: IEEE, 2017: 356-359. [13] KAUR G, ARORA A S, JAIN V K. Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(6): 474-485. [14] LEE S, CHANG J H. Deep belief networks ensemble for blood pressure estimation[J]. IEEE Access, 2017, 5: 9962-9972. [15] LEE S, CHANG J H. Deep Boltzmann regression with mimic features for oscillometric blood pressure estimation[J]. IEEE Sensors Journal, 2017, 17(18): 5982-5993. [16] LI P, LIU M, ZHANG X, et al. Novel wavelet neural network algorithm for continuous and noninvasive dynamic estimation of blood pressure from photoplethysmography[J]. Science China: Information Sciences, 2016, 59(4):042405. [17] ABBASI R, MORADI M H, MOLAEEZADEH S F. Long-term prediction of blood pressure time series using multiple fuzzy functions[C]// Proceedings of the 201421th Iranian Conference on Biomedical Engineering. Piscataway, NJ: IEEE, 2015:124-127. [18] FONG A, MITTU R, RATWANI R, et al. Predicting electrocardiogram and arterial blood pressure waveforms with different echo state network architectures[EB/OL].[2018-06-20]. https://www.cs.umd.edu/sites/default/files/scholarly_papers/Fong.pdf. [19] WU T H, PANG K H, KWONG W Y. Predicting systolic blood pressure using machine learning[C]// Proceedings of the 7th International Conference on Information and Automation for Sustainability. Piscataway, NJ: IEEE, 2015:1-6. [20] LI X H, WU S, WANG L, et al. Blood pressure prediction via recurrent models with contextual layer[C]// Proceedings of the 26th International Conference on World Wide Web. Geneva: International World Wide Web Conferences Steering Committee,2017:685-693. [21] SAK H, SENIOR A, BEAUFAYS F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[EB/OL].[2018-05-20]. http://193.6.4.39/~czap/letoltes/IS14/IS2014/PDF/AUTHOR/IS141304.PDF. [22] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10):2451-2471. [23] 刘洪洋, 李莉, 崔天祥,等. 血压控制良好的原发性高血压患者夜间收缩压下降率与心率及心率变异性的关系[J]. 中华高血压杂志, 2015, 23(11):1076-1079.(LIU H Y, LI L, CUI T X, et al. Relationship between the rate of night systolic blood pressure drop and heart rate and heart rate variability in patients with essential hypertension with good blood pressure control[J]. Chinese Journal of Hypertension, 2015, 23(11):1076-1079.) |