[1] 冯贵兰, 李正楠, 周文刚. 大数据分析技术在网络领域中的研究综述[J]. 计算机科学, 2019, 46(6):1-20.(FENG G L,LI Z N, ZHOU W G. Research on application of big data analytics in network[J]. Computer Science,2019,46(6):1-20.) [2] HABIBI M,WEBER L,NEVES M,et. al. Deep learning with word embeddings improves biomedical named entity recognition[J]. Bioinformatics,2017,33(14):i37-i48. [3] 刘璟. 中文命名实体识别方法研究[J]. 电脑知识与技术, 2019, 15(9):179-180.(LIU J. Research on Chinese named entity recognition[J]. Computer Knowledge and Technology,2019,15(9):179-180. [4] LONG S,YUAN R,YI L,et al. A method of Chinese named entity recognition based on CNN-BiLSTM-CRF model[C]//Proceedings of the 2018 International Conference of Pioneering Computer Scientists,Engineers and Educators,CCIS 902. Singapore:Springer, 2018:161-175. [5] 祖木然提古丽·库尔班, 艾山·吾买尔. 中文命名实体识别模型对比分析[J]. 现代计算机,2019(14):3-7. (KUERBAN Z, WUMAIER A. Analysis and comparison of Chinese named entity recognition model[J]. Modern Computer,2019(14):3-7.) [6] 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12):20-36.(ZHENG Y P,LI G Y,LI Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications,2019,55(12):20-36.) [7] 王蔚, 胡婷婷, 冯亚琴. 基于深度学习的自然与表演语音情感识别[J]. 南京大学学报(自然科学版), 2019, 55(4):660-666. (WANG W,HU T T,FENG Y Q. Speech emotion recognition in nature and scripted state based on deep learning[J]. Journal of Nanjing University(Natural Science),2019,55(4):660-666.) [8] XING F Z,CAMBRIA E,WELSCH R E. Natural language based financial forecasting:a survey[J]. Artificial Intelligence Review, 2017,50(1):49-73. [9] HUANG Z,XU W,YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2019-05-05]. https://hxhlwf.github.io/assets/Bidirectional%20LSTM-CRF%20Models%20for%20Sequence%20Tagging.pdf. [10] MA X,HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[EB/OL].[2019-05-09]. https://arxiv.org/pdf/1603.01354.pdf. [11] LUO L,YANG H,CHIN F Y L. EmotionX-DLC:self-attentive BiLSTM for detecting sequential emotions in dialogue[C]//Proceedings of the 6th International Workshop on Natural Language Processing for Social Media. Stroudsburg:Association for Computational Linguistics,2018:32-36. [12] ZHANG H,GOODFELLOW I,METAXAS D,et al. Self-attention generative adversarial networks[EB/OL].[2019-05-21]. http://www.ivsn-group.com/seminar/2019/PDF/LYF20190530.pdf. [13] ZENG Y,YANG H,FENG Y,et al. A convolution BiLSTM neural network model for Chinese event extraction[C]//Proceedings of the 2016 International Conference on Computer Processing of Oriental Languages, LNCS 10102. Cham:Springer, 2016:275-287. [14] SHAKUROVA L,NYARI B,LI C,et al. Best practices for learning domain-specific cross-lingual embeddings[C]//Proceedings of the 4th Workshop on Representation Learning for NLP. Stroudsburg:Association for Computational Linguistics,2019:230-234. [15] 杨朔, 陈丽芳, 石瑀, 等. 基于深度生成式对抗网络的蓝藻语义分割[J]. 计算机应用, 2018, 38(6):1554-1561.(YANG S, CHEN L F,SHI Y,et al. Semantic segmentation of blue-green algae based on deep generative adversarial net[J]. Journal of Computer Applications,2018,38(6):1554-1561.) [16] DEVLIN J,CHANG M-W,LEE K,et al. BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2019-05-21]. https://arxiv.org/pdf/1810.04805.pdf. |