[1] 魏晓宁.基于隐马尔可夫模型的中文分词研究[J]. 电脑知识与技术(学术交流), 2007, 4(11):885-886.(WEI X N. HMM-based of study on Chinese language classifying words [J]. Computer Knowledge and Technology (Academic Exchange), 2007, 4(11):885-886.) [2] ANDREW M, DAYNE F, FEMANDO P. Maximum entropy Markov models for information extraction and segmentation [C]//Proceedings of the Seventeenth International Conference on Machine Learning. New York: ACM, 2000: 591-598. [3] LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data [C]//Proceedings of the 18th International Conference on Machine Learning. New York: ACM, 2001:282-289. [4] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [5] TURIAN J, RATINOV L, BENGIO Y. Word representations: a simple and general method for semi-supervised learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010: 384-394. [6] KOO T, CARRERAS X, COLLINS M. Simple semi-supervised dependency parsing[C]//Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2008: 595-603. [7] MANN G S, MCCALLUM A. Generalized expectation criteria for semi-supervised learning of conditional random fields[C]//Proceedings of the 2008 Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010:1374-1377. [8] YU D, WANG S, DENG L. Sequential labeling using deep-structured conditional random fields[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(6):965-973. [9] ZHENG X Q, CHEN H Y, XU T Y. Deep learning for Chinese word segmentation and POS tagging[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle: [s. n.], 2013: 647-657. [10] 来斯惟, 徐立恒, 陈玉博, 等.基于表示学习的中文分词算法探索[J]. 中文信息学报, 2013, 27(5): 8-14.(LAI S W, XU L H, CHEN Y B, et al. Chinese word segment based on character representation learning [J]. Journal of Chinese Information Processing, 2013, 27(5): 8-14.) [11] QIU X, QIAN P, YIN L, et al. Overview of the NLPCC 2015 shared task: Chinese word segmentation and POS tagging for micro-blog texts (2015)[EB/OL]. [2015-03-10]. http://arxiv.org/abs/1505.0759. [12] word2vec[EB/OL]. [2015-03-12]. https://code.google.com/p/word2vec/. [13] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[EB/OL]. [2015-03-10]. https://arxiv.org/abs/1310.4546. [14] WU X, ZHOU J, SUN Y et al. Generalization of words for Chinese dependency parsing[C]//Proceedings of the 4th CCF Conference on Natural Language Processing and Chinese Computing, LNCS 9362. Berlin: Springer, 2015: 36-46. [15] MILLER S, GUINNESS J, ZAMANIAN A. Name tagging with word clusters and discriminative training[EB/OL]. [2015-03-10]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.9395. [16] CRF++[EB/OL]. [2015-03-20]. http://sourceforge.net/projects/crfpp/. [17] GAO J F, LI M, WU A, et al. Chinese word segmentation and named entity recognition: a pragmatic approach[J]. Computational Linguistics, 2005, 31(4):531-574. [18] SUN X, WANG H, LI W. Fast online training with frequency-adaptive learning rates for Chinese word segmentation and new word detection[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2012: 253-262. [19] 杜丽萍, 李晓戈, 于根, 等.基于互信息改进算法的新词发现对中文分词系统改进[J]. 北京大学学报(自然科学版),2016, 52(1): 35-40.(DU L P, LI X G, YU G, et al. New word detection based on an improved PMI algorithm for enhancing segmentation system [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(1): 35-40.) [20] MIN K R, MA C G, ZHAO T M, et al. BonsonNLP: an ensemble approach for word segmentation and POS tagging[C]//Proceedings of the 4th CCF Conference on Natural Language Processing & Chinese Computing. Berlin: Springer, 2015: 520-526. |