[1] 王寿兵,徐紫然,张洁.大型湖库富营养化蓝藻水华防控技术发展述评[J].水资源保护,2016,32(4):88-99.(WANG S B, XU Z R, ZHANG J. A review of technologies for prevention and control of cyanobacteria blooms in large-scale eutrophicated lakes and reservoirs[J]. Water Resources Protection, 2016, 32(4):88-99.) [2] 孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.(KONG F X, GAO G. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes[J]. Acta Ecologica Sinica, 2005, 25(3):589-595.) [3] 王长友,于洋,孙运坤,等.基于ELCOM-CAEDYM模型的太湖蓝藻水华早期预测探讨[J].中国环境科学,2013,33(3):491-502.(WANG C Y, YU Y, SUN Y K, et al. The discussion of the early forecasting of cyanobacteria bloom in the Lake Taihu based on ELCOM-CAEDYM model[J]. China Environmental Science, 2013, 33(3):491-502.) [4] 邵飞,施彦,王小艺,等.基于复杂网络的城市湖库藻类水华形成识别研究[J].环境科学学报,2014,34(8):2121-2125.(SHAO F, SHI Y, WANG X Y, et al. Recognition of lake algal bloom based on complex network[J]. Acta Scientiae Circumstantiae, 2014, 34(8):2121-2125.) [5] 郑剑锋,焦继东,孙力平.基于神经网络的城市内湖水华预警综合建模方法研究[J].中国环境科学,2017,37(5):1872-1878.(ZHENG J F, JIAO J D, SUN L P. A modeling approach for early-warning of water bloom risk in urban lake based on neural network[J]. China Environmental Science, 2017, 37(5):1872-1878.) [6] 常淳,冯平,孙冬梅,等.基于逐步聚类分析的水库浮游藻类生长预测[J].中国环境科学,2015,35(9):2805-2812.(CHANG C, FENG P, SUN D M, et al. Prediction of the alga growth in a reservoir based on the stepwise cluster analysis[J]. China Environmental Science, 2015, 35(9):2805-2812.) [7] 王小艺,唐丽娜,刘载文,等.藻类水华形成机理的模糊Petri网优化建模研究[J].电子学报,2013,41(1):68-71.(WANG X Y, TANG L N, LIU Z W, et al. Research on the fuzzy Petri net optimization modeling of water bloom formation process[J]. Acta Electronica Sinica, 2013, 41(1):68-71.) [8] 张威威,李瑞敏,谢中教.基于深度学习的城市道路旅行时间预测[J].系统仿真学报,2017,29(10):2309-2322.(ZHANG W W, LI R M, XIE Z J. Travel time prediction of urban road based on deep learning[J]. Journal of System Simulation, 2017, 29(10):2309-2322.) [9] 徐敏捷.基于指数平滑法的微博舆情预测模型研究[J].中国公共安全(学术版),2016(1):80-84.(XU M J. Research on microblogging public opinion forecast model based on exponential smoothing[J]. China Public Security:Academy Edition, 2016(1):80-84.) [10] 郭丽丽,丁世飞.深度学习研究进展[J].计算机科学,2015,42(5):28-33.(GUO L L, DING S F. Research progress on deep learning[J]. Compute Science, 2015, 42(5):28-33.) [11] UBEYLI E D. Combining recurrent neural networks with eigenvector methods for classification of ECG beats[J]. Digital Signal Processing, 2009, 19(2):320-329. [12] SUNDERMEYER M, NEY H, SCHLUTER R. From feedforward to recurrent LSTM neural networks for language modeling[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2015, 23(3):517-529. [13] PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks[C]//Proceedings of the 30th International Conference on Machine Learning. Lilk:JMLR, 2013, 28:1310-1318. [14] JOZEFOWICZ R, ZAREMBA W, SUTSKEVER I. An empirical exploration of recurrent network architectures[C]//Proceedings of the 2015 International Conference on International Conference on Machine Learning. Lille:JMLR, 2015:2342-2350. [15] 张亮,黄曙光,石昭祥,等.基于LSTM型RNN的CAPTCHA识别方法[J].模式识别与人工智能,2011,24(1):40-47.(ZHANG L, HUANG S G, SHI Z X, et al. CAPTCHA recognition method based on RNN of LSTM[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1):40-47.) [16] ORDÓÑEZ F J, ROGGEN D. Deep convolutional and LSTM re-current neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1):115. [17] 滕飞,郑超美,李文.基于长短期记忆多维主题情感倾向性分析模型[J].计算机应用,2016,36(8):2252-2256.(TENG F, ZHENG C M, LI W. Multidimensional topic model for oriented sentiment analysis based on long short-term memory[J]. Journal of Computer Applications, 2016, 36(8):2252-2256.) [18] 陈强,蒋卫国,陈曦,等.基于支持向量回归模型的水稻田甲烷排放通量预测研究[J].环境科学,2013,34(8):2975-2982.(CHEN Q, JIANG W G, CHEN X, et al. Prediction of methane emission of paddy field based on the support vector regression model[J]. Environmental Science, 2013, 34(8):2975-2982.) [19] 李渊,李云梅,王桥,等.基于集合均方根滤波的太湖叶绿a浓度估算与预测[J].环境科学,2013,34(1):61-68.(LI Y, LI Y M, WANG Q, et al. Estimation and forecast of chlorophyll a concentration in Taihu lake based on ensemble square root filters[J]. Environmental Sciences, 2013, 34(1):61-68.) |