Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 713-722.DOI: 10.11772/j.issn.1001-9081.2022020245
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Zeyu WANG1(), Shuhui BU2, Wei HUANG1, Yuanpan ZHENG1, Qinggang WU1, Xu ZHANG1
Received:
2022-03-02
Revised:
2022-06-09
Accepted:
2022-06-14
Online:
2022-08-16
Published:
2023-03-10
Contact:
Zeyu WANG
About author:
WANG Zeyu, born in 1989, Ph. D., lecturer. His research interests include deep learning, computer vision.Supported by:
王泽宇1(), 布树辉2, 黄伟1, 郑远攀1, 吴庆岗1, 张旭1
通讯作者:
王泽宇
作者简介:
王泽宇(1989—),男,河南郑州人,讲师,博士,主要研究方向:深度学习、计算机视觉基金资助:
CLC Number:
Zeyu WANG, Shuhui BU, Wei HUANG, Yuanpan ZHENG, Qinggang WU, Xu ZHANG. Local and global context attentive fusion network for traffic scene parsing[J]. Journal of Computer Applications, 2023, 43(3): 713-722.
王泽宇, 布树辉, 黄伟, 郑远攀, 吴庆岗, 张旭. 面向交通场景解析的局部和全局上下文注意力融合网络[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 713-722.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020245
方法 | 主干网络 | 扩展数据集 | 马路 | 人行道 | 建筑 | 墙 | 围栏 | 杆 | 信号灯 | 交通标识 | 植物 | 地面 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
SPBGRN | ResNet-101 | — | 98.7 | 86.9 | 93.6 | 57.6 | 62.8 | 70.3 | 78.7 | 81.7 | 93.8 | 72.4 |
SCARN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
SBEPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
STLN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
GPN | ResNet-101 | — | 98.8 | 87.8 | 93.8 | 61.8 | 63.3 | 70.4 | 78.9 | 81.7 | 94.0 | 72.4 |
CEN | ResNet-101 | — | 98.8 | 89.1 | 94.6 | 62.7 | 63.7 | 66.4 | 75.7 | 79.7 | 94.7 | 73.6 |
CAAN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
RCAN | HRNet-W48 | — | — | — | — | — | — | — | — | — | — | — |
OCRN | HRNet-W48 | — | 98.8 | 88.2 | 94.2 | 67.6 | 65.3 | 72.1 | 79.0 | 82.3 | 94.1 | 73.8 |
LGCAFN | ResNet-101 | — | 98.9 | 88.9 | 94.0 | 66.8 | 66.5 | 73.6 | 79.6 | 82.3 | 94.2 | 73.8 |
SWRN | SWideRNet-(1,1,4.5) | | 98.8 | 88.4 | 94.6 | 68.2 | 68.6 | 76.0 | 81.2 | 84.7 | 94.3 | 74.1 |
HMAN | HRNet-W48 | | 98.9 | 89.3 | 94.9 | 71.8 | 68.3 | 75.8 | 82.1 | 85.2 | 94.4 | 74.9 |
ITN | HRNet-W48 | | 98.8 | 89.6 | 94.8 | 71.7 | 69.1 | 75.7 | 82.2 | 85.4 | 94.2 | 74.9 |
LGCAFN | ResNet-101 | | 99.0 | 89.3 | 95.0 | 73.4 | 72.3 | 76.3 | 82.5 | 86.3 | 94.7 | 75.6 |
方法 | 主干网络 | 扩展数据集 | 天空 | 行人 | 骑手 | 汽车 | 卡车 | 公交车 | 火车 | 摩托车 | 自行车 | 平均 |
CPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 81.3 |
SPBGRN | ResNet-101 | — | 95.6 | 88.1 | 74.5 | 96.2 | 73.6 | 88.8 | 86.3 | 72.1 | 79.2 | 81.6 |
SCARN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.1 |
SBEPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.2 |
STLN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.3 |
GPN | ResNet-101 | — | 95.9 | 88.2 | 74.8 | 96.4 | 80.4 | 91.1 | 85.4 | 72.0 | 78.6 | 82.5 |
CEN | ResNet-101 | — | 96.4 | 87.3 | 75.4 | 94.2 | 79.4 | 91.9 | 86.8 | 73.3 | 79.7 | 82.5 |
CAAN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.6 |
RCAN | HRNet-W48 | — | — | — | — | — | — | — | — | — | — | 82.7 |
OCRN | HRNet-W48 | — | 95.9 | 88.1 | 74.9 | 96.3 | 76.8 | 92.2 | 90.8 | 72.8 | 78.8 | |
LGCAFN | ResNet-101 | — | 95.6 | 88.9 | 77.3 | 95.2 | 81.0 | 93.3 | 89.3 | 75.6 | 80.6 | |
SWRN | SWideRNet-(1,1,4.5) | | 96.2 | 89.7 | 79.7 | 96.7 | 82.0 | 94.1 | 92.1 | 77.1 | 79.2 | 85.1 |
HMAN | HRNet-W48 | | 96.3 | 90.1 | 79.7 | 96.9 | 82.5 | 94.6 | 87.8 | 77.1 | 81.7 | 85.4 |
ITN | HRNet-W48 | | 96.2 | 90.2 | 79.8 | 96.9 | 84.3 | 95.7 | 90.5 | 77.1 | 81.6 | 85.7 |
LGCAFN | ResNet-101 | | 96.0 | 90.5 | 80.4 | 97.0 | 84.2 | 94.6 | 91.1 | 78.9 | 82.4 | 86.3 |
Tab. 1 mIoU results of LGCAFN and existing state-of-the-art methods on Cityscapes dataset
方法 | 主干网络 | 扩展数据集 | 马路 | 人行道 | 建筑 | 墙 | 围栏 | 杆 | 信号灯 | 交通标识 | 植物 | 地面 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
SPBGRN | ResNet-101 | — | 98.7 | 86.9 | 93.6 | 57.6 | 62.8 | 70.3 | 78.7 | 81.7 | 93.8 | 72.4 |
SCARN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
SBEPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
STLN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
GPN | ResNet-101 | — | 98.8 | 87.8 | 93.8 | 61.8 | 63.3 | 70.4 | 78.9 | 81.7 | 94.0 | 72.4 |
CEN | ResNet-101 | — | 98.8 | 89.1 | 94.6 | 62.7 | 63.7 | 66.4 | 75.7 | 79.7 | 94.7 | 73.6 |
CAAN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | — |
RCAN | HRNet-W48 | — | — | — | — | — | — | — | — | — | — | — |
OCRN | HRNet-W48 | — | 98.8 | 88.2 | 94.2 | 67.6 | 65.3 | 72.1 | 79.0 | 82.3 | 94.1 | 73.8 |
LGCAFN | ResNet-101 | — | 98.9 | 88.9 | 94.0 | 66.8 | 66.5 | 73.6 | 79.6 | 82.3 | 94.2 | 73.8 |
SWRN | SWideRNet-(1,1,4.5) | | 98.8 | 88.4 | 94.6 | 68.2 | 68.6 | 76.0 | 81.2 | 84.7 | 94.3 | 74.1 |
HMAN | HRNet-W48 | | 98.9 | 89.3 | 94.9 | 71.8 | 68.3 | 75.8 | 82.1 | 85.2 | 94.4 | 74.9 |
ITN | HRNet-W48 | | 98.8 | 89.6 | 94.8 | 71.7 | 69.1 | 75.7 | 82.2 | 85.4 | 94.2 | 74.9 |
LGCAFN | ResNet-101 | | 99.0 | 89.3 | 95.0 | 73.4 | 72.3 | 76.3 | 82.5 | 86.3 | 94.7 | 75.6 |
方法 | 主干网络 | 扩展数据集 | 天空 | 行人 | 骑手 | 汽车 | 卡车 | 公交车 | 火车 | 摩托车 | 自行车 | 平均 |
CPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 81.3 |
SPBGRN | ResNet-101 | — | 95.6 | 88.1 | 74.5 | 96.2 | 73.6 | 88.8 | 86.3 | 72.1 | 79.2 | 81.6 |
SCARN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.1 |
SBEPN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.2 |
STLN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.3 |
GPN | ResNet-101 | — | 95.9 | 88.2 | 74.8 | 96.4 | 80.4 | 91.1 | 85.4 | 72.0 | 78.6 | 82.5 |
CEN | ResNet-101 | — | 96.4 | 87.3 | 75.4 | 94.2 | 79.4 | 91.9 | 86.8 | 73.3 | 79.7 | 82.5 |
CAAN | ResNet-101 | — | — | — | — | — | — | — | — | — | — | 82.6 |
RCAN | HRNet-W48 | — | — | — | — | — | — | — | — | — | — | 82.7 |
OCRN | HRNet-W48 | — | 95.9 | 88.1 | 74.9 | 96.3 | 76.8 | 92.2 | 90.8 | 72.8 | 78.8 | |
LGCAFN | ResNet-101 | — | 95.6 | 88.9 | 77.3 | 95.2 | 81.0 | 93.3 | 89.3 | 75.6 | 80.6 | |
SWRN | SWideRNet-(1,1,4.5) | | 96.2 | 89.7 | 79.7 | 96.7 | 82.0 | 94.1 | 92.1 | 77.1 | 79.2 | 85.1 |
HMAN | HRNet-W48 | | 96.3 | 90.1 | 79.7 | 96.9 | 82.5 | 94.6 | 87.8 | 77.1 | 81.7 | 85.4 |
ITN | HRNet-W48 | | 96.2 | 90.2 | 79.8 | 96.9 | 84.3 | 95.7 | 90.5 | 77.1 | 81.6 | 85.7 |
LGCAFN | ResNet-101 | | 96.0 | 90.5 | 80.4 | 97.0 | 84.2 | 94.6 | 91.1 | 78.9 | 82.4 | 86.3 |
方法 | 主干网络 | 参数量/106 | 浮点运算量/ GFLOPs | mIoU/% |
---|---|---|---|---|
SWRN | SWideRNet-(1,1,4.5) | 168.77 | 680.7 | 85.1 |
OCRN | HRNet-W48 | 67.25 | 410.6 | 83.3 |
CEN | ResNet-101 | 92.80 | 286.1 | 82.5 |
ITN | HRNet-W48 | 69.00 | 253.3 | 85.7 |
LGCAFN | ResNet-101 | 65.75 | 228.9 | 86.3 |
Tab. 2 Model complexity comparison on Cityscapes dataset
方法 | 主干网络 | 参数量/106 | 浮点运算量/ GFLOPs | mIoU/% |
---|---|---|---|---|
SWRN | SWideRNet-(1,1,4.5) | 168.77 | 680.7 | 85.1 |
OCRN | HRNet-W48 | 67.25 | 410.6 | 83.3 |
CEN | ResNet-101 | 92.80 | 286.1 | 82.5 |
ITN | HRNet-W48 | 69.00 | 253.3 | 85.7 |
LGCAFN | ResNet-101 | 65.75 | 228.9 | 86.3 |
模型 | mIoU |
---|---|
Baseline | 77.6 |
Baseline+CASPP | 80.4 |
Baseline+CASPP+LSTM | 82.8 |
Baseline+CASPP+LSTM+Attention | 84.0 |
Tab. 3 Ablation study on Cityscapes dataset
模型 | mIoU |
---|---|
Baseline | 77.6 |
Baseline+CASPP | 80.4 |
Baseline+CASPP+LSTM | 82.8 |
Baseline+CASPP+LSTM+Attention | 84.0 |
方法 | ResNet-101(r1, r2, r3, r4, r5) | mIoU |
---|---|---|
1 | ResNet-101(1,(1,1,1),(1,1,1,1),(1,1_6,1_4,1_4,1_4,1_4),(1,1,1)) | 77.6 |
ResNet-101(2,(2,2,2),(2,2,2,2),(2,2_6,2_4,2_4,2_4,2_4),(2,2,2)) | 78.3 | |
ResNet-101(4,(4,4,4),(4,4,4,4),(4,4_6,4_4,4_4,4_4,4_4),(4,4,4)) | 78.6 | |
ResNet-101(8,(8,8,8),(8,8,8,8),(8,8_6,8_4,8_4,8_4,8_4),(8,8,8)) | 78.9 | |
ResNet-101(16,(16,16,16),(16,16,16,16),(16,16_6,16_4,16_4,16_4,16_4),(16,16,16)) | 77.8 | |
ResNet-101(24,(24,24,24),(24,24,24,24),(24,24_6,24_4,24_4,24_4,24_4),(24,24,24)) | 76.9 | |
2 | ResNet-101(2,(4,4,4),(8,8,8,8),(8,8_6,8_4,8_4,8_4,8_4),(16,16,16)) | 79.5 |
3 | ResNet-101(2,(2,4,8),(2,4,8,16),(2,4_6,8_4,8_4,16_4,24_4),(4,8, 6)) | 80.4 |
Tab. 4 Sparse sampling rate setting study of feature extraction module on Cityscapes dataset
方法 | ResNet-101(r1, r2, r3, r4, r5) | mIoU |
---|---|---|
1 | ResNet-101(1,(1,1,1),(1,1,1,1),(1,1_6,1_4,1_4,1_4,1_4),(1,1,1)) | 77.6 |
ResNet-101(2,(2,2,2),(2,2,2,2),(2,2_6,2_4,2_4,2_4,2_4),(2,2,2)) | 78.3 | |
ResNet-101(4,(4,4,4),(4,4,4,4),(4,4_6,4_4,4_4,4_4,4_4),(4,4,4)) | 78.6 | |
ResNet-101(8,(8,8,8),(8,8,8,8),(8,8_6,8_4,8_4,8_4,8_4),(8,8,8)) | 78.9 | |
ResNet-101(16,(16,16,16),(16,16,16,16),(16,16_6,16_4,16_4,16_4,16_4),(16,16,16)) | 77.8 | |
ResNet-101(24,(24,24,24),(24,24,24,24),(24,24_6,24_4,24_4,24_4,24_4),(24,24,24)) | 76.9 | |
2 | ResNet-101(2,(4,4,4),(8,8,8,8),(8,8_6,8_4,8_4,8_4,8_4),(16,16,16)) | 79.5 |
3 | ResNet-101(2,(2,4,8),(2,4,8,16),(2,4_6,8_4,8_4,16_4,24_4),(4,8, 6)) | 80.4 |
方法 | mIoU |
---|---|
LSTM(↓,↑,→,←) | 82.3 |
LSTM(↘,↖,↙,↗) | 81.6 |
LSTM(↓,↑,→,←,↘,↖,↙,↗) | 82.8 |
Tab. 5 Effect of different LSTM traversal methods on performance
方法 | mIoU |
---|---|
LSTM(↓,↑,→,←) | 82.3 |
LSTM(↘,↖,↙,↗) | 81.6 |
LSTM(↓,↑,→,←,↘,↖,↙,↗) | 82.8 |
方法 | mIoU |
---|---|
Concatenation | 83.1 |
Element-wise addition | 83.3 |
Attention mechanism | 84.0 |
Tab. 6 Effect of different fusion methods on performance
方法 | mIoU |
---|---|
Concatenation | 83.1 |
Element-wise addition | 83.3 |
Attention mechanism | 84.0 |
1 | MO Y J, WU Y, YANG X N, et al. Review the state-of-the-art technologies of semantic segmentation based on deep learning[J]. Neurocomputing, 2022, 493: 626-646. 10.1016/j.neucom.2022.01.005 |
2 | AGIA C, JATAVALLABHULA K M, KHODEIR M, et al. Taskography: evaluating robot task planning over large 3D scene graphs[C]// Proceedings of the 5th Conference on Robot Learning. New York: JMLR.org, 2022: 46-58. |
3 | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11618-11628. 10.1109/cvpr42600.2020.01164 |
4 | YU C, LIU Z X, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]// Proceedings of the 2018 IEEE/RSJ Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018: 1168-1174. 10.1109/iros.2018.8593691 |
5 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. 10.1109/cvpr.2015.7298965 |
6 | NGUYEN K, FOOKES C, SRIDHARAN S. Context from within: Hierarchical context modeling for semantic segmentation[J]. Pattern Recognition, 2020, 105: No.107358. 10.1016/j.patcog.2020.107358 |
7 | ZHANG R M, YANG W, PENG Z L, et al. Progressively diffused networks for semantic visual parsing[J]. Pattern Recognition, 2019, 90: 78-86. 10.1016/j.patcog.2019.01.011 |
8 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 |
9 | YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3684-3692. 10.1109/cvpr.2018.00388 |
10 | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851. 10.1007/978-3-030-01234-2_49 |
11 | TAO A, SAPRA K, CATANZARO B. Hierarchical multi-scale attention for semantic segmentation[EB/OL]. (2020-05-21) [2022-01-05].. 10.48550/arXiv.2005.10821 |
12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. |
13 | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149. 10.1109/cvpr.2019.00326 |
14 | YUAN Y H, CHEN X L, WANG J D. Object-contextual representations for semantic segmentation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12351. Cham: Springer, 2020: 173-190. |
15 | LI X, YANG Y B, ZHAO Q J, et al. Spatial pyramid based graph reasoning for semantic segmentation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8947-8956. 10.1109/cvpr42600.2020.00897 |
16 | YU C Q, WANG J B, GAO C X, et al. Context prior for scene segmentation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12413-12422. 10.1109/cvpr42600.2020.01243 |
17 | CHEN X, HAN Z, LIU X P, et al. Semantic boundary enhancement and position attention network with long-range dependency for semantic segmentation[J]. Applied Soft Computing, 2021, 109: No.107511. 10.1016/j.asoc.2021.107511 |
18 | DING X F, SHEN C M, CHE Z P, et al. SCARF: a semantic constrained attention refinement network for semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 3002-3011. 10.1109/iccvw54120.2021.00335 |
19 | ZHANG Y, SUN X, DONG J Y, et al. GPNet: gated pyramid network for semantic segmentation[J]. Pattern Recognition, 2021, 115: No.107940. 10.1016/j.patcog.2021.107940 |
20 | HUANG Y, KANG D, JIA W J, et al. Channelized axial attention-Considering channel relation within spatial attention for semantic segmentation[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 1016-1025. 10.1609/aaai.v36i1.19985 |
21 | LU B X, HU Q H, WANG Y, et al. RCANet: row-column attention network for semantic segmentation[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 2604-2608. 10.1109/icassp43922.2022.9746869 |
22 | ZHOU Q, WU X F, ZHANG S F, et al. Contextual ensemble network for semantic segmentation[J]. Pattern Recognition, 2022, 122: No.108290. 10.1016/j.patcog.2021.108290 |
23 | HUANG Y, KANG D, CHEN L, et al. CAR: class-aware regularizations for semantic segmentation[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13688. Cham: Springer, 2022: 518-534. |
24 | 杨贞,彭小宝,朱强强,等. 基于Deeplab V3 Plus的自适应注意力机制图像分割算法[J]. 计算机应用, 2022, 42(1): 230-238. |
YANG Z, PENG X B, ZHU Q Q, et al. Image segmentation algorithm with adaptive attention mechanism based on Deeplab V3 Plus[J]. Journal of Computer Applications, 2022, 42(1): 230-238. | |
25 | 余娜,刘彦,魏雄炬,等. 基于注意力机制和金字塔融合的RGB-D室内场景语义分割[J]. 计算机应用, 2022, 42(3): 844-853. 10.11772/j.issn.1001-9081.2021030392 |
YU N, LIU Y, WEI X J, et al. Semantic segmentation of RGB-D indoor scenes based on attention mechanism and pyramid fusion[J]. Journal of Computer Applications, 2022, 42(3): 844-853. 10.11772/j.issn.1001-9081.2021030392 | |
26 | 段立娟,孙启超,乔元华,等. 基于注意力感知和语义感知的RGB-D室内图像语义分割算法[J]. 计算机学报, 2021, 44(2): 275-291. 10.11897/SP.J.1016.2021.00275 |
DUAN L J, SUN Q C, QIAO Y H, et al. Attention-aware and semantic-aware network for RGB-D indoor semantic segmentation[J]. Chinese Journal of Computers, 2021, 44(2): 275-291. 10.11897/SP.J.1016.2021.00275 | |
27 | 吴绿,张馨月,唐茉,等. Focus+Context语义表征的场景图像分割[J]. 电子学报, 2021, 49(3): 596-604. |
WU L, ZHANG X Y, TANG M, et al. Focus+Context semantic representation in scene segmentation[J]. Acta Electronica Sinica, 2021, 49(3): 596-604. | |
28 | 黄庭鸿,聂卓赟,王庆国,等. 基于区块自适应特征融合的图像实时语义分割[J]. 自动化学报, 2021, 47(5): 1137-1148. |
HUANG T H, NIE Z Y, WANG Q G, et al. Real-time image semantic segmentation based on block adaptive feature fusion[J]. Acta Automatica Sinica, 2021, 47(5): 1137-1148. | |
29 | ZHU L Y, JI D Y, ZHU S P, et al. Learning statistical texture for semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12532-12541. 10.1109/cvpr46437.2021.01235 |
30 | CHEN L C, WANG H Y, QIAO S Y. Scaling wide residual networks for panoptic segmentation[EB/OL]. (2021-02-08) [2022-01-21].. |
31 | BORSE S, WANG Y, ZHANG Y Z, et al. InverseForm: a loss function for structured boundary-aware segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5897-5907. 10.1109/cvpr46437.2021.00584 |
32 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
33 | CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3213-3223. 10.1109/cvpr.2016.350 |
34 | ABADI M, AGARWAL A, BARHAM P, et al. TensorfFlow: large-scale machine learning on heterogeneous distributed systems[EB/OL]. (2016-03-16) [2021-11-16].. |
35 | LeCUN Y, BOTTOU L, ORR G B, et al. Efficient backprop[M]// ORR G B, MÜLLER K R. Neural Networks: Tricks of the Trade, LNCS 1524. Berlin: Springer, 1998: 9-50. |
36 | ZINKEVICH M, WEIMER M, LI L, et al. Parallelized stochastic gradient descent[C]// Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2. Red Hook, NY: Curran Associates Inc., 2010: 2595-2603. |
37 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5693-5703. 10.1109/cvpr.2019.00584 |
[1] | Runze TIAN, Yulong ZHOU, Hong ZHU, Gang XUE. Local information based path selection algorithm for service migration [J]. Journal of Computer Applications, 2024, 44(7): 2168-2174. |
[2] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[3] | Xiaoyu HUA, Dongfen LI, You FU, Kejun BI, Shi YING, Ruijin WANG. Industrial chain risk assessment and early warning model combining hierarchical graph neural network and long short-term memory [J]. Journal of Computer Applications, 2024, 44(10): 3223-3231. |
[4] | Zhiping ZHU, Yan YANG, Jie WANG. Scene graph-aware cross-modal image captioning model [J]. Journal of Computer Applications, 2024, 44(1): 58-64. |
[5] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
[6] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
[7] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
[8] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[9] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[10] | Bennian YU, Yongzhao ZHAN, Qirong MAO, Wenlong DONG, Honglin LIU. Double complex convolution and attention aggregating recurrent network for speech enhancement [J]. Journal of Computer Applications, 2023, 43(10): 3217-3224. |
[11] | ZHANG Jun, WU Pengli, SHI Lukui, SHI Jin, PAN Bin. Deep learning model for multi-station temperature prediction combined with MOD11A1 and surface meteorological station data [J]. Journal of Computer Applications, 2023, 43(1): 321-328. |
[12] | LIU Hui, MA Xiang, ZHANG Linyu, HE Rujin. Aspect-based sentiment analysis model integrating match-LSTM network and grammatical distance [J]. Journal of Computer Applications, 2023, 43(1): 45-50. |
[13] | Yinglü XUAN, Yuan WAN, Jiahui CHEN. Time series classification by LSTM based on multi-scale convolution and attention mechanism [J]. Journal of Computer Applications, 2022, 42(8): 2343-2352. |
[14] | Ning DONG, Xiaorong CHENG, Mingquan ZHANG. Intrusion detection system with dynamic weight loss function based on internet of things platform [J]. Journal of Computer Applications, 2022, 42(7): 2118-2124. |
[15] | Haiqi WANG, Zhihai WANG, Liuke LI, Haoran KONG, Qiong WANG, Jianbo XU. Spatial-temporal prediction model of urban short-term traffic flow based on grid division [J]. Journal of Computer Applications, 2022, 42(7): 2274-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||