[1] SANTOSH K C, MUKHERJEE A. On the temporal dynamics of opinion spamming:case studies on Yelp[C]//Proceedings of the 25th International Conference on World Wide Web. Montréal, Québec:[s.n.], 2016:369-379. [2] 林煜明, 王晓玲, 朱涛, 等.用户评论的质量检测与控制研究综述[J].软件学报, 2014,25(3):506-527.(LIN Y M,WANG X L,ZHU T, et al. A review of research on quality inspection and control of user comments[J]. Journal of Software, 2014, 25(3):506-527.) [3] JINDAL N, LIU B. Analyzing and detecting review spam[C]//Proceedings of the 7th IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2007:547-552. [4] 莫倩, 杨珂.网络水军识别研究[J].软件学报, 2014, 25(7):1505-1526.(MO Q, YANG K. Overview of Web spammer detection[J].Journal of Software, 2014,25(7):1505-1526.) [5] OTT M, CHOI Y, CARDIE C, et al. Finding deceptive opinion spam by any stretch of the imagination[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2011:309-319. [6] JINDAL N, LIU B. Opinion spam and analysis[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining. New York:ACM, 2008:219-230. [7] REN Y F, JI D H. Neural networks for deceptive opinion spam detection:an empirical study[J].Information Sciences, 2017, 385:213-224. [8] MENG J E, ZHANG Y, WANG N, et al. Attention pooling-based convolutional neural network for sentence modelling[J].Information Sciences, 2016,373(C):388-403. [9] LI J, OTT M, CARDIE C, et al. Towards a general rule for identifying deceptive opinion spam[EB/OL].[2018-03-20].http://www.aclweb.org/anthology/P/P14/P14-1147.pdf. [10] LI L Y, QIN B, REN W J, et al. Document representation and feature combination for deceptive spam review detection[J].Neurocomputing 2017,254:33-41. [11] WU Y, FENG G, WANG N, et al. Game of information security investment:impact of attack types and network vulnerability[J].Expert Systems with Applications, 2015, 42(15/16):6132-6146. [12] FDEZ-GLEZ J, RUANO-ORDAS D, MÉNDEZ J R. A dynamic model for integrating simple Web spam classification techniques[J].Expert Systems with Applications, 2015,42(21):7969-7978. [13] GOH K L, SINGH A K. Comprehensive literature review on machine learning structures for Web spam classification[J]. Procedia Computer Science, 2015,70:434-441. [14] JINDAL N, LIU B, LIM E P. Finding unusual review patterns using unexpected rules[C]//Proceedings of the 2010 International Conference on Information and Knowledge Management. New York:ACM,2010:1549-1552. [15] HEYDARI A, TAVAKOLI M, SALIM N. A framework for review spam detection research[EB/OL].[2018-03-20].https://pdfs.semanticscholar.org/46a9/74b6a2fe378a366432ac535cf25c9f32d773.pdf. [16] LAU R Y K, LIAO S Y, KWOK C W, et al. Text mining and probabilistic language modeling for online review spam detection[J]. ACM Transactions on Management Information Systems, 2012,2(4):1-30. [17] PENG Q, ZHONG M. Detecting spam review through sentiment analysis[J].Journal of Software, 2014, 9(8):2065. [18] TANG D, WEI F, YANG N, et al. Learning sentiment-specific word embedding for twitter sentiment classification[EB/OL].[2018-03-20].http://ir.hit.edu.cn/~dytang/paper/sswe/acl-slides.pdf. [19] 唐晓波, 朱娟, 杨丰华.基于情感本体和kNN算法的在线评论情感分类研究[J].情报理论与实践,2016(6):110-114.(TANG X B, ZHU J, YANG F H. Research on online comment emotion classification based on emotion ontology and kNN algorithm[J]. Information Studies:Theory & Application, 2016(6):110-114.) [20] CRAWFORD M, KHOSHGOFTAAR T M, PRUSA J D, et al. Survey of review spam detection using machine learning techniques[J].Journal of Big Data, 2015, 2(1):23. [21] ESHRAQI N, JALALI M, MOATTAR M H. Spam detection in social networks:a review[C]//Proceedings of the 20152nd International Congress on Technology, Communication and Knowledge. Piscataway, NJ:IEEE, 2015:148-152. [22] YOO K H, GRETZEL U. Comparison of deceptive and truthful travel reviews[C]//Proceedings of the 2009 International Conference on Information and Communication Technology. Berlin:Springer, 2009:37-47. [23] OTT M, CARDIE C, HANCOCK J T. Negative deceptive opinion spam[EB/OL].[2018-03-20].http://www.cs.cornell.edu/Info/People/cardie/papers/NAACL13-Negative.pdf. [24] LIN Y, ZHU T, WU H, et al. Towards online anti-opinion spam:spotting fake reviews from the review sequence[C]//Proceedings of the 2014 International Conference on Advances in Social Networks Analysis and Mining. Washington, DC:IEEE Computer Society, 2014:261-264. [25] HEYDARI A, TAVAKOLI M, SALIM N. Detection of fake opinions using time series[J].Expert Systems with Applications, 2016,58(C):83-92. [26] AHSAN M N I, NAHIAN T, KAFI A A, et al. Review spam detection using active learning[C]//Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference. Piscataway, NJ:IEEE, 2016:1-7. [27] ZHANG W, BU C Q, YOSHIDA T, et al. CoFea:a novel approach to spam review identification based on entropy and co-training[J]. Entropy, 2016, 18(12):429. [28] 何珑.基于随机森林的产品垃圾评论识别[J].中文信息学报, 2015,29(3):150-154.(HE L. Identification of product review spam by random forest[J]. Journal of Chinese Information Processing, 2015,29(3):150-154.) [29] WANG Z, HOU T, SONG D, et al. Detecting review spammer groups via bipartite graph projection[J].Computer Journal, 2016, 59(6):bxv068. [30] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[EB/OL].[2018-03-20].http://www.aclweb.org/anthology/N/N16/N16-1174.pdf. [31] KIM Y. Convolutional neural networks for sentence classification[J/OL]. arXiv Preprint, 2014, 2014:arXiv:1408.5882(2014-08-05)[2014-09-03]. https://arxiv.org/abs/1408.5882. [32] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[EB/OL].[2018-03-20].http://mirror.aclweb.org/acl2014/P14-1/pdf/P14-1062.pdf. [33] SANTOS C N D, GATTIT M. Deep convolutional neural networks for sentiment analysis of short texts[EB/OL].[2018-03-20].http://aclweb.org/anthology/C/C14/C14-1008.pdf. [34] REN Y, ZHANG Y, ZHANG M, et al. Improving Twitter sentiment classification using topic-enriched multi-prototype word embeddings[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2016:3038-3044. [35] REN Y, ZHANG Y, ZHANG M, et al. Context-sensitive twitter sentiment classification using neural network[C]//Proceedings of the 30th AAAI Conference on Artifical Intelligence. Menlo Park, CA:AAAI Press, 2016:215-221. [36] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks, 2005, 18(5/6):602-610. [37] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[EB/OL].[2018-03-20].http://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf. [38] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15(1):1929-1958. [39] ZEILER M D. ADADELTA:an adaptive learning rate method[EB/OL].[2018-03-20].http://www.matthewzeiler.com/wp-content/uploads/2017/07/googleTR2012.pdf. [40] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2018-03-20].http://seed.ucsd.edu/mediawiki/images/e/e3/Wordembeddings.pdf. |