[1] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9):1757-1771. [2] LIN Y J, HU Q H, ZHANG J,et al. Multi-label feature selection with streaming labels[J]. Information Sciences, 2016, 372:256-275. [3] ZHANG M L, ZHOU Z H. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1338-1351. [4] TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multi-label classification of music into emotions[EB/OL].[2018-03-20].https://www.korotkov.co/wp-content/uploads/2014/04/Emotion-detection-in-Music1.pdf. [5] ZHANG Y, ZHOU Z H. Multi-label dimensionality reduction via dependence maximization[C]//Proceedings of the 23rd National Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2008:1503-1505. [6] LIN Y, HU Q, LIU J, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied Soft Computing, 2016, 38:244-256. [7] LIN Y J, HU Q H, LIU J H,et al. Streaming feature selection for multi-label learning based on fuzzy mutual information[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6):1491-1507. [8] ZHANG L, HU Q, DUAN J, et al. Multi-label feature selection with fuzzy rough sets[C]//Proceedings of the 9th International Conference on Rough Sets and Knowledge Technology. Berlin:Springer, 2014:121-128. [9] HE X, CAI D, NIYOGI P. Laplacian score for feature selection[EB/OL].[2018-03-20].http://papers.nips.cc/paper/2909-laplacian-score-for-feature-selection.pdf. [10] 严鹏,李云.基于图谱的多标记特征选择算法[J].计算机科学与探索, 2016,10(4):543-553.(YAN P, LI Y. Spectral theory based multi-label feature selection[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(4):543-553.) [11] ALALGA A, BENABDESLEM K, TALEB N. Soft-constrained Laplacian score for semi-supervised multi-label feature selection[J]. Knowledge & Information Systems, 2016, 47(1):75-98. [12] YAN P, LI Y. Graph-margin based multi-label feature selection[C]//Proceedings of the 2016 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin:Springer, 2016:540-555. [13] NAUMANN U, SCHENK O. Combinatorial Scientific Computing[M].[S.l.]:CRC Press, 2012:1-600. [14] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. [15] ZHANG Y, ZHOU Z H. Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(3):Article No. 14. [16] ZHANG M,PEÑA J,ROBLES V. Feature selection for multilabel naive Bayes classification[J]. Information Sciences,2009,179(19):3218-3229. [17] LEE J, KIM D W. Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34(3):349-357. [18] ZHANG M L, ZHOU Z H. ML-KNN:A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [19] FRIEDMAN M. A comparison of alternative tests of significance for the problem of m rankings[J]. The Annals of Mathematical Statistics, 1940, 11(1):86-92. [20] DEMŠAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7(1):1-30. |