[1] TELEA A. An image inpainting technique based on the fast marching method[J]. Journal of Graphics Tools, 2004, 9(1):23-34. [2] TANG F, YING Y T, WANG J, et al. A novel texture synthesis based algorithm for object removal in photographs[C]//Proceedings of the 2004 Annual Asian Computing Science Conference, LNCS 3321. Berlin:Springer, 2004:248-258. [3] WEXLERY, SHECHTMAN E, IRANI M. Space-time video completion[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2004:I-120-I-127. [4] BARNES C, GOLDMAN D B, SHECHTMAN E, et al. The PatchMatch randomized matching algorithm for image manipulation[J]. Communications of the ACM, 2011, 54(11):103-110. [5] HE K M, SUN J. Computing nearest-neighbor fields via propagation-assisted KD-trees[C]//Proceeddings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:111-118. [6] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York:ACM, 2008:1096-1103. [7] DOSOVITSKIY A, BROX T. Inverting visual representations with convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:4829-4837. [8] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL].[2018-03-26]. https://arxiv.org/pdf/1312.6114.pdf. [9] LARSEN A B L, SØNDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[C]//ICML'16:Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, NY:JMLR, 2016:1558-1566. [10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:2672-2680. [11] LI Y J, LIU S F, YANG J M, et al. Generative face completion[EB/OL].[2018-03-26]. http://cn.arxiv.org/pdf/1704.05838v1. [12] YEH R A, CHEN C, LIM T Y, et al. Semantic image inpainting with deep generative models[EB/OL].[2018-03-26]. http://cn.arxiv.org/pdf/1607.07539v3. [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[EB/OL].[2018-03-26]. http://cn.arxiv.org/pdf/1512.03385v1. [14] UIJLINGS J R R, van de SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [15] ZITNICK C L, DOLLAR P. Edge boxes:locating object proposals from edges[C]//Proceedings of the2014 European Conference on Computer Vision. Berlin:Springer, 2014:391-405. [16] OUYANG W L, LUO P, ZENG X Y, et al. Deep ID-Net:multi-stage and deformable deep convolutional neural networks for object detection[EB/OL].[2018-03-26]. https://arxiv.org/pdf/1409.3505.pdf. [17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-03-26]. https://arxiv.org/pdf/1409.1556.pdf. [18] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [19] LE Q V. Building high-level features using large scale unsupervised learning[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2013:8595-8598. [20] KINGMA D P, REZENDE D J, MOHAMED S, et al. Semi-supervised learning with deep generative models[EB/OL].[2018-03-26]. https://arxiv.org/pdf/1406.5298.pdf. [21] SHRIVASTAVA A, PFISTER T, TUZEL O, et al. Learning from simulated and unsupervised images through adversarial training[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:2242-2251. [22] ⅡZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4):Article No. 107. [23] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders:feature learning by inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:2536-2544. [24] 王坤峰,苟超,段艳杰,等.生成式对抗网络的研究进展与展望[J].自动化学报,2017,43(3):321-332.(WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks:the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3):321-332.) |