[1] PASCANU R, STOKES J W, SANOSSIAN H, et al. Malware classification with recurrent networks[C]//Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2015:1916-1920. [2] WANG X, YIU S M. A multi-task learning model for malware classification with useful file access pattern from API call sequence[EB/OL].[2018-07-04]. https://arxiv.org/pdf/1610.05945. [3] RHODE M, BURNAP P, JONES K. Early-stage malware prediction using recurrent neural networks[EB/OL].[2018-07-04]. https://arxiv.org/pdf/1708.03513. [4] YUAN Z, LU Y Q, WANG Z, et al. Droid-Sec:deep learning in android malware detection[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(4):371-372. [5] 李春林,黄月江,王宏,等. 一种基于深度学习的网络入侵检测方法[J].信息安全与通信保密,2014(10):68-71.(LI C L, HUANG Y J, WANG H, et al. Detection of network intrusion based on deep learning[J]. Information Security and Communications Privacy, 2014(10):68-71.) [6] LI Y, MA R, JIAO R. A hybrid malicious code detection method based on deep learning[J]. International Journal of Software Engineering and Its Applications, 2015, 9(5):205-216. [7] JAVAID A, NIYAZ Q, SUN W, et al. A deep learning approach for network intrusion detection system[C]//Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies. New York:BICT. 2016:21-26. [8] 高妮,高岭,贺毅岳,等. 基于自编码网络特征降维的轻量级入侵检测模型[J].电子学报,2017,45(3):730-739.(GAO N, GAO L, HE Y Y, et al. A lightweight intrusion detection model based on autoencoder network with feature reduction[J]. Acta Electronica Sinica, 2017,45(3):730-739.) [9] DENG L, YU D. Deep learning:methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7(3/4):197-387. [10] 袁静,章毓晋.融合梯度信息的稀疏去噪自编码网络在异常行为检测中的应用[J].自动化学报,2017,43(4):604-610.(YUAN J, ZHANG Y J. Application of sparse denoising auto encoder network with gradient difference information for abnormal action detection[J]. Acta Automatica Sinica, 2017, 43(3):604-610.) [11] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York:ACM, 2008:1096-1103. [12] HINTON G,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7):1527-1554. [13] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2006:153-160. [14] University of California. KDD Cup 99[DB/OL].[2018-07-18]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [15] LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. Journal of Machine Learning Research, 2009, 10(6):1-40. [16] KUANG F,XU W,ZHANG S. A novel hybrid KPCA and SVM with GA model for intrusion detection[J]. Applied Soft Computing, 2014, 18(4):178-184. |