1 杰里米·伯格 . 单细胞尺度的生命探索[J]. 思羽,译. 世界科学, 2019(1):1. (BERG J. Life exploration on a single cell scale[J]. SI Y, translated. World Science, 2019(1):1.)
2 翟畅,叶波平 . 秀丽隐杆线虫与药物筛选[J]. 药物生物技术, 2017, 24(5):464-467. (ZHAI C, YE B P. Caenorhabditis elegans in drug screening[J]. Pharmaceutical Biotechnology, 2017, 24(5): 464-467.)
3 田华洁,黄晓星,孙海燕,等 . 秀丽隐杆线虫用于帕金森病及其治疗药物的分子生物学研究[J]. 世界临床药物, 2013, 34(7) :436-438, 446. TIAN H J , HUANG X X , SUN H Y , et al . Caenorhabditis Elegans: a model organism of molecular biology for Parkinson’s disease and its drug evaluation[J]. World Clinical Drugs, 2013, 34(7): 436-438, 446.
4 罗山,张冬梅 . 基于自适应阈值和形态学的改进分水岭分割算法[J].山西电子技术, 2018(6):3-5. (LUO S, ZHANG D M. Improved watershed segmentation algorithm based on adaptive threshold and morphology[J]. Shanxi Electronic Technology, 2018(6):3-5.)
5 张雯柏,柴晓冬,郑树彬,等 . 基于二值形态学算子的轨道图像分割新算法[J]. 测控技术, 2018, 37(10):10-13, 21. ZHANG W B , CHAI X D , ZHENG S B , et al . A new algorithm for orbital image segmentation based on binary morphological operator[J]. Measurement and Control Technology, 2018, 37(10):10-13, 21.
6 LIU G H , DONG F , FU C H , et al . Automated morphometry toolbox for analysis of microscopic model organisms using simple bright-field imaging[J]. Biology Open, 2019, 8(3):No.bio037788.
7 LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521(7553): 436-444.
8 RAZAVIAN A S , AZIZPOUR H , SULLIVAN J , et al . CNN features off-the-shelf: an astounding baseline for recognition[C]// Proceedings of the 2014 IEEE Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2014: 512-519.
9 GIRSHICK R , DONAHUE J , DARRELL T , et al . Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
10 HE K , ZHANG X , REN S , et al . Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
11 GIRSHICK R . Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1440-1448.
12 REN S , HE K , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
13 HE K , GKIOXARI G , DOLLáR P , et al . Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2980-2988.
14 LIU W , WEN Y , YU Z , et al . Large-margin softmax loss for convolutional neural networks[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: JMLR.org, 2016:507-516.
15 LI Y , QI H , DAI J , et al . Fully convolutional instance-aware semantic segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:4438-4446.
16 HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
17 SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB/OL]. [2019-03-20].https://arxiv.org/pdf/1409.1556.pdf.
18 SZEGEDY C , LIU W , JIA Y , et al . Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015:1-9.
19 RAFFERTY J , SHELLITO P , HYMAN N H , et al . Practice parameters for sigmoid diverticulitis[J]. Diseases of the Colon and Rectum, 2006, 49(7):939-944.
20 VINCENT P , LAROCHELLE H , LAJOIE I , et al . Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11:3371-3408.
21 MARTINS A F , ASTUDILLO R , et al . From softmax to sparsemax: a sparse model of attention and multi-label classification[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: JMLR.org, 2016:1614-1623.
22 LIANG X , WEI Y , SHEN X , et al . Reversible recursive instance-level object segmentation[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Computer Society, 2016:633-641.
23 LIU S , QI X , SHI J , et al . Multi-scale Patch Aggregation (MPA) for simultaneous detection and segmentation[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:3141-3149.
24 常颖 . 基于Curvelet变换的图像增强算法研究[D]. 长春:长春理工大学, 2011: 176-214. CHANG Y.Curvelet transform based on the image enhancement algorithms[D]. Changchun: Changchun University of Science and Technology, 2011: 176-214.
25 葛阳,杨瑞峰,张鹏 . 基于改进的二维Otsu分割算法及其应用研究[J]. 核电子学与探测技术, 2012, 32(1):115-118. GE Y, YANG R F, ZHANG P.Research on improved two-dimensional Otsu segmentation algorithm and its application[J]. Nuclear Electronics and Detection Technology, 2012, 32(1):115-118. |