Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (10): 2883-2887.DOI: 10.11772/j.issn.1001-9081.2019040707

• Artificial intelligence • Previous Articles     Next Articles

Forest fire smoke detection model based on deep convolution long short-term memory network

WEI Xin, WU Shuhong, WANG Yaoli   

  1. College of Information and Computer, Taiyuan University of Technology, Taiyuan Shanxi 030600, China
  • Received:2019-04-24 Revised:2019-07-05 Online:2019-10-10 Published:2019-10-14
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61828601), the Natural Science Foundation of Shanxi Province (201801D121141).

基于深度卷积长短期记忆网络的森林火灾烟雾检测模型

卫鑫, 武淑红, 王耀力   

  1. 太原理工大学 信息与计算机学院, 太原 030600
  • 通讯作者: 武淑红
  • 作者简介:卫鑫(1994-),女,山西吕梁人,硕士研究生,主要研究方向:机器学习、深度学习;武淑红(1969-),女,山西太原人,副教授,博士,主要研究方向:音视频编码算法、金融信息系统设计、SoC与嵌入式系统;王耀力(1965-),男,山西太原人,副教授,博士,主要研究方向:信息系统设计、人机视觉分析与处理、嵌入式系统。
  • 基金资助:
    国家自然科学基金资助项目(61828601);山西省自然科学基金资助项目(201801D121141)。

Abstract: Since the smoke characteristics of each sampled frame have great similarity, and the forest fire smoke dataset is relatively small and monotonous, in order to make full use of the static and dynamic information of smoke to prevent forest fires, a Deep Convolution Integrated Long Short-Term Memory network (DC-ILSTM) model was proposed. Firstly, VGG-16 networks pre-trained on ImageNet dataset were used for feature transfer based on isomorphic data to effectively extract smoke characteristics. Secondly, an Integrated Long Short-Term Memory network (ILSTM) based on pooling layer and Long Short-Term Memory network (LSTM) was proposed, and ILSTM was used for segmental fusion of smoke characteristics. Finally, a trainable deep neural network model was built for forest fire smoke detection. In the smoke detection experiment, compared with Deep Convolution Long Recursive Network (DCLRN), DC-ILSTM can detect smoke with 10 frames advantage under the optimal efficiency and has the test accuracy increased by 1.23 percentage points. The theoretical analysis and simulation results show that DC-ILSTM has good applicability in forest fire smoke detection.

Key words: smoke detection, deep convolutional neural network, Long Short-Term Memory network (LSTM), transfer learning, small dataset

摘要: 针对采样的每帧烟雾特征具有极大的相似性,以及森林火灾烟雾数据集相对较小且单调等问题,为充分利用烟雾的静态与动态信息来达到预防森林火灾的目的,提出一种深度卷积集成式长短期记忆网络(DC-ILSTM)模型。首先,使用在ImageNet数据集上预训练好的VGG-16网络进行基于同构数据的特征迁移,以有效提取出烟雾特征;其次,基于池化层与长短期记忆网络(LSTM)提出一种集成式长短期记忆网络(ILSTM),并利用ILSTM分段融合烟雾特征;最后,搭建一种可训练的深度神经网络模型用于森林火灾烟雾检测。烟雾检测实验中,与深卷积长递归网络(DCLRN)相比,DC-ILSTM在最佳效率下以10帧的优势检测到烟雾,而且在测试准确率上提高了1.23个百分点。实验结果表明,DC-ILSTM在森林火灾烟雾检测中有很好的适用性。

关键词: 烟雾检测, 深度卷积神经网络, 长短期记忆网络, 迁移学习, 微量数据集

CLC Number: