Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (8): 2426-2430.DOI: 10.11772/j.issn.1001-9081.2022071004
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Kezheng CHEN1,2, Xiaoran GUO3, Yong ZHONG1,2, Zhenping LI1,2
Received:2022-07-11
															
							
																	Revised:2022-11-03
															
							
																	Accepted:2022-11-21
															
							
							
																	Online:2023-01-15
															
							
																	Published:2023-08-10
															
							
						Contact:
								Yong ZHONG   
													About author:CHEN Kezheng, born in 1998, M. S. candidate. His research interests include nature language processing, big data.Supported by:陈克正1,2, 郭晓然3, 钟勇1,2, 李振平1,2
通讯作者:
					钟勇
							作者简介:陈克正(1998—),男,山东济宁人,硕士研究生,CCF会员,主要研究方向:自然语言处理、大数据基金资助:CLC Number:
Kezheng CHEN, Xiaoran GUO, Yong ZHONG, Zhenping LI. Relation extraction method based on negative training and transfer learning[J]. Journal of Computer Applications, 2023, 43(8): 2426-2430.
陈克正, 郭晓然, 钟勇, 李振平. 基于负训练和迁移学习的关系抽取方法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2426-2430.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022071004
| 序号 | 句子 | 远程监督标签 | 是否标注正确 | 
|---|---|---|---|
| 1 | 观音,即观世音菩萨 | 别称 | 正确 | 
| 2 | 观音一般指的就是观世音菩萨 | 别称 | 正确 | 
| 3 | 多罗观音为观世音菩萨的修行伴侣 | 别称 | 错误 | 
| 4 | 千手观音是观世音菩萨的三十二相之一 | 别称 | 错误 | 
Tab.1 Sentences labelled by distant supervision
| 序号 | 句子 | 远程监督标签 | 是否标注正确 | 
|---|---|---|---|
| 1 | 观音,即观世音菩萨 | 别称 | 正确 | 
| 2 | 观音一般指的就是观世音菩萨 | 别称 | 正确 | 
| 3 | 多罗观音为观世音菩萨的修行伴侣 | 别称 | 错误 | 
| 4 | 千手观音是观世音菩萨的三十二相之一 | 别称 | 错误 | 
| 关系类型 | 三元组数 | 关系类型 | 三元组数 | 
|---|---|---|---|
| 梵音译 | 869 | 简称 | 292 | 
| 化身 | 133 | 藏音译 | 1 173 | 
| 藏文 | 345 | 合称 | 1 173 | 
| 梵意译 | 587 | 藏意译 | 7 | 
| 别称 | 1 894 | 梵文 | 889 | 
Tab.2 Distribution of relation types of manually labelled dataset
| 关系类型 | 三元组数 | 关系类型 | 三元组数 | 
|---|---|---|---|
| 梵音译 | 869 | 简称 | 292 | 
| 化身 | 133 | 藏音译 | 1 173 | 
| 藏文 | 345 | 合称 | 1 173 | 
| 梵意译 | 587 | 藏意译 | 7 | 
| 别称 | 1 894 | 梵文 | 889 | 
| 关系类型 | 三元组数 | 关系类型 | 三元组数 | 
|---|---|---|---|
| 梵音译 | 825 | 简称 | 2 800 | 
| 化身 | 631 | 藏音译 | 49 | 
| 藏文 | 295 | 合称 | 3 488 | 
| 梵意译 | 445 | 藏意译 | 0 | 
| 别称 | 10 629 | 梵文 | 3 071 | 
Tab.3 Distribution of relation types of dataset augmented by distant supervision
| 关系类型 | 三元组数 | 关系类型 | 三元组数 | 
|---|---|---|---|
| 梵音译 | 825 | 简称 | 2 800 | 
| 化身 | 631 | 藏音译 | 49 | 
| 藏文 | 295 | 合称 | 3 488 | 
| 梵意译 | 445 | 藏意译 | 0 | 
| 别称 | 10 629 | 梵文 | 3 071 | 
| 模型 | 精确率 | 召回率 | F1 | 
|---|---|---|---|
| PCNN | 0.695 5 | 0.638 7 | 0.661 4 | 
| BiLSTM | 0.703 4 | 0.659 9 | 0.678 9 | 
| BiLSTM+ATT | 0.732 8 | 0.603 2 | 0.683 3 | 
| BERT | 0.805 6 | 0.786 4 | 0.791 5 | 
| SENT | 0.909 1 | 0.855 8 | 0.877 2 | 
| 本文模型 | 0.9396 | 0.9101 | 0.9167 | 
Tab.4 Comparison of experimental results of different models
| 模型 | 精确率 | 召回率 | F1 | 
|---|---|---|---|
| PCNN | 0.695 5 | 0.638 7 | 0.661 4 | 
| BiLSTM | 0.703 4 | 0.659 9 | 0.678 9 | 
| BiLSTM+ATT | 0.732 8 | 0.603 2 | 0.683 3 | 
| BERT | 0.805 6 | 0.786 4 | 0.791 5 | 
| SENT | 0.909 1 | 0.855 8 | 0.877 2 | 
| 本文模型 | 0.9396 | 0.9101 | 0.9167 | 
| 1 | 郭喜跃,何婷婷. 信息抽取研究综述[J]. 计算机科学, 2015, 42(2): 14-17. 10.11896/j.issn.1002-137X.2015.2.003 | 
| GUO X Y, HE T T. Survey about research on information extraction[J]. Computer Science, 2015, 42(2):14-17. 10.11896/j.issn.1002-137X.2015.2.003 | |
| 2 | 姚萍,李坤伟,张一帆. 知识图谱构建技术综述[J]. 信息系统工程, 2020(5):121-121, 123. 10.3969/j.issn.1001-2362.2020.05.054 | 
| YAO P, LI K W, ZHANG Y F. Summary of knowledge graph construction technology[J]. China CIO News, 2020(5): 121-121, 123. 10.3969/j.issn.1001-2362.2020.05.054 | |
| 3 | 沈航可,祁志卫,张子辰,等. 知识图谱的候选实体搜索与排序[J]. 计算机系统应用, 2021, 30(11): 46-53. | 
| SHEN H K, QI Z W, ZHANG Z C, et al. Candidate entity search and ranking of knowledge map[J]. Computer Systems and Applications, 2021, 30(11): 46-53. | |
| 4 | BACH N, BADASKAR S. A review of relation extraction[EB/OL]. [2022-06-22].. 10.2139/ssrn.4173454 | 
| 5 | XIONG C Y, POPWER R, CALLAN J. Explicit semantic ranking for academic search via knowledge graph embedding[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 1271-1279. 10.1145/3038912.3052558 | 
| 6 | ZHANG Y Z, JIANG Z T, ZHANG T, et al. MIE: a medical information extractor towards medical dialogues[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 6460-6469. 10.18653/v1/2020.acl-main.576 | 
| 7 | MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Stroudsburg, PA: ACL, 2009: 1003-1011. 10.3115/1690219.1690287 | 
| 8 | RIEDEL S, YAO L M, McCALLUM A. Modeling relations and their mentions without labeled text[C]// Proceedings of the 2010 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 6323. Berlin: Springer, 2010: 148-163. 10.5715/jnlp.4.3_1 | 
| 9 | ZENG D J, LIU K, CHEN Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2015: 1753-1762. 10.18653/v1/d15-1203 | 
| 10 | QU J F, OUYANG D T, HUA W, et al. Distant supervision for neural relation extraction integrated with word attention and property features[J]. Neural Networks, 2018, 100: 59-69. 10.1016/j.neunet.2018.01.006 | 
| 11 | LIN Y K, SHEN S Q, LIU Z Y, et al. Neural relation extraction with selective attention over instances[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2016: 2124-2133. 10.18653/v1/p16-1200 | 
| 12 | XIAO Y, JIN Y C, CHENG R, et al. Hybrid attention-based Transformer block model for distant supervision relation extraction[J]. Neurocomputing, 2022, 470: 29-39. 10.1016/j.neucom.2021.10.037 | 
| 13 | ZHOU Y R, PAN L M, BAI C Y, et al. Self-selective attention using correlation between instances for distant supervision relation extraction[J]. Neural Networks, 2021, 142: 213-220. 10.1016/j.neunet.2021.04.032 | 
| 14 | CHEN T, SHI H Z, TANG S L, et al. CIL: contrastive instance learning framework for distantly supervised relation extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2021: 6191-6200. 10.18653/v1/2021.acl-long.483 | 
| 15 | LI D, ZHANG T, HU N, et al. HiCLRE: a hierarchical contrastive learning framework for distantly supervised relation extraction[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg, PA: ACL, 2022: 2567-2578. 10.18653/v1/2022.findings-acl.202 | 
| 16 | SHANG Y M, HUANG H Y, MAO X L, et al. Are noisy sentences useless for distant supervised relation extraction?[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 8799-8806. 10.1609/aaai.v34i05.6407 | 
| 17 | MA R T, GUI T, LI L Y, et al. SENT: sentence-level distant relation extraction via negative training[C]// Proceedings of 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2021:6201-6213. 10.18653/v1/2021.acl-long.484 | 
| 18 | KIM Y, YIM J, YUN J, et al. NLNL: negative learning for noisy labels[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 101-110. 10.1109/iccv.2019.00019 | 
| 19 | TORREY L, SHAVLIK J. Transfer learning[M]// OLIVAS E S, GUERRERO, J D M, MARTINEZ-SOBER M, et al. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. Hershey, PA: IGI Global, 2010: 242-264. 10.4018/978-1-60566-766-9.ch011 | 
| 20 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. 10.1109/tkde.2009.191 | 
| 21 | CHEN C, JIANG B Y, CHENG Z W, et al. Joint domain matching and classification for cross-domain adaptation via ELM[J]. Neurocomputing, 2019, 349: 314-325. 10.1016/j.neucom.2019.01.056 | 
| 22 | GUO H L, ZHU H J, GUO Z L, et al. Domain adaptation with latent semantic association for named entity recognition[C]// Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2009: 281-289. 10.3115/1620754.1620795 | 
| 23 | FU L S, NGUYEN T H, MIN B N, et al. Domain adaptation for relation extraction with domain adversarial neural network[C]// Proceedings of the 8th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). [S.l.]: Asian Federation of Natural Language Processing, 2017: 425-429. | 
| 24 | SUN C, QIU X P, XU Y G, et al. How to fine-tune BERT for text classification?[C]// Proceedings of the 2019 China National Conference on Chinese Computational Linguistics, LNCS 11856. Cham: Springer, 2019: 194-206. | 
| 25 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 | 
| 26 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. | 
| 27 | ZHANG S, ZHENG D Q, HU X C, et al. Bidirectional long short-term memory networks for relation classification[C/OL]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation [2020-04-20].. | 
| 28 | ZHANG Y H, ZHONG V, CHEN D Q, et al. Position-aware attention and supervised data improve slot filling[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2017: 35-45. 10.3115/116580.1138590 | 
| [1] | Qi SHUAI, Hairui WANG, Guifu ZHU. Chinese story ending generation model based on bidirectional contrastive training [J]. Journal of Computer Applications, 2024, 44(9): 2683-2688. | 
| [2] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. | 
| [3] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. | 
| [4] | Quanmei ZHANG, Runping HUANG, Fei TENG, Haibo ZHANG, Nan ZHOU. Automatic international classification of disease coding method incorporating heterogeneous information [J]. Journal of Computer Applications, 2024, 44(8): 2476-2482. | 
| [5] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. | 
| [6] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. | 
| [7] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [8] | Qianhui LU, Yu ZHANG, Mengling WANG, Tingwei WU, Yuzhong SHAN. Classification model of nuclear power equipment quality text based on improved recurrent pooling network [J]. Journal of Computer Applications, 2024, 44(7): 2034-2040. | 
| [9] | Chao WEI, Yanping CHEN, Kai WANG, Yongbin QIN, Ruizhang HUANG. Relation extraction method based on mask prompt and gated memory network calibration [J]. Journal of Computer Applications, 2024, 44(6): 1713-1719. | 
| [10] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. | 
| [11] | Yao LIU, Yumeng LI, Miaomiao SONG. Cognitive graph based on business process [J]. Journal of Computer Applications, 2024, 44(6): 1699-1705. | 
| [12] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. | 
| [13] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. | 
| [14] | Wangjun SHI, Jing WANG, Xiaojun NING, Youfang LIN. Sleep stage classification model by meta transfer learning in few-shot scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1445-1451. | 
| [15] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||