[1] JOLLIFFE I T. Principal component analysis[J]. Journal of Marketing Research,2002,25(4):513. [2] BELKIN M,NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2001:585-591. [3] HE X,NIYOGI P. Locality preserving projections[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2003:153-160. [4] WRIGHT J,YANG A Y,GANESH A,et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227. [5] RUSSAKOVSKY O,DENG J,SU H,et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision,2015,115(3):211-252. [6] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-04-10]. https://arxiv.org/pdf/1409.1556.pdf. [7] SZEGEDY C,LIU W,JIA Y,et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:1-9. [8] HE K,ZHANG X,REN S,et al. Identity mappings in deep residual networks[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9908. Cham:Springer,2016:630-645. [9] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2018-10-15]. https://arxiv.org/pdf/1704.04861.pdf. [10] ZHANG X,ZHOU X,LIN M,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[EB/OL].[2018-10-07]. https://arxiv.org/pdf/1707.01083.pdf. [11] CHEN S,LIU Y,GAO X,et al. MobileFaceNets:efficient CNNs for accurate real-time face verification on mobile devices[EB/OL].[2018-06-15]. https://arxiv.org/ftp/arxiv/papers/1804/1804.07573.pdf. [12] SCHROFF F,KALENICHENKO D,PHILBIN J. FaceNet:a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:815-823. [13] WEN Y,ZHANG K,LI Z,et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9911. Cham:Springer,2016:499-515. [14] LIU W,WEN Y,YU Z,et al. SphereFace:deep hypersphere embedding for face recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6738-6746. [15] WANG H,WANG Y T,ZHOU Z,et al. CosFace:large margin cosine loss for deep face recognition[EB/OL].[2018-04-03]. https://arxiv.org/pdf/1801.09414.pdf. [16] DENG J,GUO J,XUE N,et al. ArcFace:additive angular margin loss for deep face recognition[EB/OL].[2019-02-09]. https://arxiv.org/pdf/1801.07698.pdf. [17] ZHANG K,ZHANG Z,LI Z,et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503. [18] MA N,ZHANG X,ZHENG H,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[EB/OL].[2018-12-10]. https://arxiv.org/pdf/1807.11164.pdf. [19] SANDLER M,HOWARD A,ZHU M,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520. [20] 任梓涵, 杨双远. 基于视觉跟踪的实时视频人脸识别[J]. 厦门大学学报(自然科学版),2018,57(3):438-444. (REN Z H, YANG S Y. Real-time face recognition in videos based on visual tracking[J]. Journal of Xiamen University (Natural Science), 2018,57(3):438-444.) [21] 方国康, 李俊, 王垚儒. 基于深度学习的ARM平台实时人脸识别[J]. 计算机应用,2019,39(8):2217-2222. (FANG G K, LI J,WANG Y R. Real-time face recognition based on ARM platform based on deep learning[J]. Journal of Computer Applications,2019,39(8):2217-2222.) [22] HUANG G B,MATTAR M,BERG T,et al. Labeled faces in the wild:a database for studying face recognition in unconstrained environments[EB/OL].[2019-01-20]. https://people.cs.umass.edu/~elm/papers/lfw.pdf. [23] SENGUPTA S,CHEN J C,CASTILLO C,et al. Frontal to profile face verification in the wild[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2016:1-9. [24] MOSCHOGLOU S,PAPAIOANNOU A,SAGONAS C,et al. AgeDB:the first manually collected,in-the-wild age database[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2017:1997-2005. |