[1] ZHAO W,CHELLAPPA R,PHILLIPS P J,et al. Face recognition:a literature survey[J]. ACM Computing Surveys,2003,35(4):430-458. [2] MARCEL S,NIXON M S,LI S Z. Handbook of Biometric AntiSpoofing:Trusted Biometrics under Spoofing Attacks[M]. London:Springer,2014:65-82. [3] MANJANI I,TARIYAL S,VATSA M,et al. Detecting silicone mask-based presentation attack via deep dictionary learning[J]. IEEE Transactions on Information Forensics and Security,2017,12(7):1713-1723. [4] 邓雄, 王洪春, 赵立军, 等. 人脸识别活体检测研究方法综述[J/OL]. 计算机应用研究.[2019-09-23]. http://kns.cnki.net/kcms/detail/51.1196.TP.20190828.1154.023.html. (DENG X, WANG H C,ZHAO L J,et al. Survey on face anti-spoofing in face recognition[J/OL]. Application Research of Computers.[2019-09-23]. http://kns.cnki.net/kcms/detail/51.1196.TP.20190828.1154.023.html.) [5] SINGH A K,JOSHI P,NANDI G C. Face recognition with liveness detection using eye and mouth movement[C]//Proceedings of the 2014 International Conference on Signal Propagation and Computer Technology. Piscataway:IEEE,2014:592-597. [6] 田野, 项世军. 基于LBP和多层DCT的人脸活体检测算法[J]. 计算机研究与发展,2018,55(3):643-650. (TIAN Y,XIANG S J. LBP and multilayer DCT based anti-spoofing countermeasure in face liveness detection[J]. Journal of Computer Research and Development,2018,55(3):643-650.) [7] 徐渊, 许晓亮, 李才年, 等. 结合SVM分类器与HOG特征提取的行人检测[J]. 计算机工程,2016,42(1):56-60,65.(XU Y,XU X L,LI C N,et al. Pedestrian detection combining with SVM classifier and HOG feature extraction[J]. Computer Engineering, 2016,42(1):56-60,65.) [8] 胡斐, 文畅, 谢凯, 等. 基于微调策略的多线索融合人脸活体检测[J]. 计算机工程,2019,45(5):256-260.(HU F,WEN C, XIE K,et al. Multi-cue fusion face detection based on fine-tuning strategy[J]. Computer Engineering,2019,45(5):256-260.) [9] 冯岩, 薛瑞. 剪切波理论及其应用研究进展[J]. 信阳师范学院学报(自然科学版),2014(3):463-468. (FENG Y,XUE R. Advances in theory and application of shearlets[J]. Journal of Xinyang Normal University(Natural Science Edition),2014(3):463-468.) [10] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-04-10]. https://arxiv.org/pdf/1409.1556.pdf. [11] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc., 2012:1097-1105. [12] 李勇, 林小竹, 蒋梦莹. 基于跨连接LeNet-5网络的面部表情识别[J]. 自动化学报,2018,44(1):176-182. (LI Y,LIN X Z, JIANG M Y. Facial expression recognition based on cross-connected LeNet-5 network[J]. Acta Automatica Sinica,2018,44(1):176-182.) [13] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research,2014,15(1):1929-1958. [14] SPRINGENBERG J T,DOSOVITSKIY A,BROX T,et al. Striving for simplicity:the all convolutional net[EB/OL].[2018-12-21]. https://arxiv.org/pdf/1412.6806v3.pdf. [15] LIN M,CHEN Q,YAN S. Network in network[EB/OL].[2019-03-04]. https://arxiv.org/pdf/1312.4400.pdf. [16] ZHANG K,ZHANG Z,LI Z,et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503. [17] KINGMA D P,BA J L. Adam:a method for stochastic optimization[EB/OL].[2018-12-22]. https://arxiv.org/pdf/1412.6980v8.pdf. [18] 梁令羽, 张天天, 何为. 多尺度卷积神经网络的头部姿态估计[J]. 激光与光电子学进展,2019,56(13):No. 131003. (LIANG L Y,ZHANG T T,HE W. Head pose estimation based on multi-scale convolutional neural network[J]. Laser and Optoelectronics Progress,2019,56(13):No. 131003.) [19] 陆清正, 周宇, 叶庆卫, 等. 基于局部二值特征和BP神经网络的头部姿态估计[J]. 传感器与微系统,2019,38(2):45-48, 58.(LU Q Z,ZHOU Y,YE Q W,et al. Head pose estimation based on local binary features and BP neural network[J]. Transducer and Microsystem Technologies,2019,38(2):45-48,58.) [20] KAFAI M,BHANU B,AN L. Cluster-classification Bayesian networks for head pose estimation[C]//Proceedings of the 21st International Conference on Pattern Recognition. Piscataway:IEEE, 2012:2869-2872. [21] HUANG C,DING X,FANG C. Head pose estimation based on random forests for multiclass classification[C]//Proceedings of the 20th International Conference on Pattern Recognition. Piscataway:IEEE,2010:934-937. [22] 徐琳琳, 张树美, 赵俊莉. 构建并行卷积神经网络的表情识别算法[J]. 中国图象图形学报,2019,24(2):227-236. (XU L L, ZHANG S M,ZHAO J L. Expression recognition algorithm for parallel convolutional neural networks[J]. Journal of Image and Graphics,2019,24(2):227-236.) [23] 姚丽莎, 徐国明, 赵凤. 基于CNN局部特征融合的人脸表情识别[J/OL]. 激光与光电子学进展.[2020-01-04]. http://kns.cnki.net/kcms/detail/31.1690.TN.20190508.1150.016.html. (YAO L S,XU G M,ZHAO F. Facial expression recognition based on CNN local feature fusion[J/OL]. Laser and Optoelectronics Progress.[2020-01-04]. http://kns.cnki.net/kcms/detail/31.1690.TN.20190508.1150.016.html.) [24] SADEGHI H,RAIE A A,MOHAMMADI M R. Facial expression recognition using geometric normalization and appearance representation[C]//Proceedings of the 8th Iranian Conference on Machine Vision and Image Processing. Piscataway:IEEE,2013:856-860. [25] KIM G,EUM S,SUHR J K,et al. Face liveness detection based on texture and frequency analyses[C]//Proceedings of the 5th IAPR International Conference on Biometrics. Piscataway:IEEE, 2012:67-72. [26] SMIATACZ M. Liveness measurements using optical flow for biometric person authentication[J]. Metrology and Measurement Systems,2012,19(2):257-268. [27] NG E S,CHIA A Y S. Face verification using temporal affective cues[C]//Proceedings of the 21st International Conference on Pattern Recognition. Piscataway:IEEE,2012:1249-1252. |