[1] EKMAN P. Contacts across cultures in the face and emotion[J]. Journal of Personality and Social Psychology, 1971, 17(2):124-129.
[2] ZHAO X, ZHANG S. Facial expression recognition based on local binary patterns and kernel discriminant isomap[J]. Sensors, 2011, 11(10):9573-9588.
[3] KUMAR P, HAPPY S L, ROUTRAY A. A real-time robust facial expression recognition system using HOG features[C]//CAST 2016:Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends. Piscataway, NJ:IEEE, 2016:289-293.
[4] 刘帅师,田彦涛,万川.基于Gabor多方向特征融合与分块直方图的人脸表情识别方法[J]. 自动化学报,2011,37(12):1455-1463.(LIU S S, TIAN Y T, WAN C. Facial expression recognition method based on gabor multi-orientation features fusion and block histogram[J]. Acta Automatica Sinica, 2011, 37(12):1455-1463.)
[5] BERRETTI S, del BIMBO A, PALA P, et al. A set of selected SIFT features for 3D facial expression recognition[C]//ICPR 2010:Proceedings of the 2010 20th International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2010:4125-4128.
[6] CHEON Y, KIM D. Natural facial expression recognition using differential-AAM and manifold learning[J]. Pattern Recognition, 2009, 42(7):1340-1350.
[7] 尹星云,王洵,董兰芳,等.用隐马尔可夫模型设计人脸表情识别系统[J].电子科技大学学报,2003, 32(6):725-728.(YIN X Y, WANG X, DONG L F, et al. Design of recognition for facial expression by hidden markov model[J]. Journal of University of Electronic Science and Technology of China, 2003, 32(6):725-728.)
[8] VAPNIK V N, LERNER A Y. Recognition of patterns with help of generalized portraits[J]. Avtomatika I Telemekhanika, 1963, 24(6):774-780.
[9] ROWEIS S T. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
[10] HART P E. The condensed nearest neighbor rule[J]. IEEE Transactions on Information Theory, 1968, 14(3):515-516.
[11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//NIPS'12:Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL, USA:Curran Associates, 2012:1097-1105.
[12] LYONS M J, AKAMATSU S, KAMACHI M G, et al. Coding facial expressions with Gabor wavelets[C]//AFGR 1998:Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway, NJ:IEEE, 1998:200-205.
[13] LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-Kanade dataset (CK+):a complete dataset for action unit and emotion-specified expression[C]//CVPRW 2010:Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2010:94-101.
[14] GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning:a report on three machine learning contests[J]. Neural Networks, 2013, 64:59-63.
[15] DHALL A, GOECKE R, LUCEY S, et al. Static facial expression analysis in tough conditions:data, evaluation protocol and benchmark[C]//ICCVW 2011:Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops. Piscataway, NJ:IEEE, 2011:2106-2112.
[16] TANG Y. Deep learning using linear support vector machines[EB/OL].[2018-12-21]. https://arxiv.org/pdf/1306.0239.pdf.
[17] AL-SHABI M, CHEAH W P, CONNIE T. Facial expression recognition using a hybrid CNN-SIFT aggregator[EB/OL].[2018-08-17]. https://arxiv.org/ftp/arxiv/papers/1608/1608.02833.pdf.
[18] FANG H, PARTHALÁIN N M, AUBREY A J, et al. Facial expression recognition in dynamic sequences:an integrated approach[J]. Pattern Recognition, 2014, 47(3):1271-1281.
[19] JEON J, PARK J-C, JO Y J, et al. A real-time facial expression recognizer using deep neural network[C]//IMCOM'16:Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. New York:ACM, 2016:Article No. 94.
[20] NEHAL O, NOHA A, FAYEZ W. Intelligent real-time facial expression recognition from video sequences based on hybrid feature tracking algorithms[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(1):245-260.
[21] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Berlin:Springer, 2016:21-37.
[22] HENRIQUES J F, CASEIRO R, MARTINS, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
[23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1409.1556.pdf.
[24] HOWARD A G, ZHU M, CHEN B. et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2018-12-17]. https://arxiv.org/pdf/1704.04861.pdf.
[25] SANDLER M, HOWARD A, ZHU M, et al. Inverted residuals and linear bottlenecks:mobile networks for classification, detection and segmentation[EB/OL].[2018-12-16]. https://arxiv.org/pdf/1801.04381v2.pdf.
[26] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[EB/OL].[2018-12-06]. https://arxiv.org/pdf/1502.01852.pdf.
[27] JARRETT K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition?[C]//ICCV 2009:Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway, NJ:IEEE, 2009:2146-2153.
[28] LIEW S S, KHALIL-HANI M, BAKHTERI R. Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems[J]. Neurocomputing, 2016, 216(C):718-734.
[29] DJORK-ARNÉ C, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by Exponential Linear Units (ELUs)[EB/OL].[2019-01-22]. https://arxiv.org/pdf/1511.07289.pdf.
[30] YANG S, LUO P, LOY C C, et al. WIDER FACE:a face detection benchmark[C]//CVPR 2016:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:5525-5533.
[31] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//CVPR 2009:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2009:248-255.
[32] YANG S, LUO P, LOY C C, et al. From facial parts responses to face detection:a deep learning approach[C]//ICCV 2015:Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:3676-3684.
[33] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503.
[34] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//AAAI 2017:Proceedings of the 31st AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2017:23-38.
[35] GUO Y, TAO D, YU J, et al. Deep neural networks with relativity learning for facial expression recognition[C]//ICMEW 2016:Proceedings of the 2016 IEEE International Conference on Multimedia and Expo Workshops. Piscataway, NJ:IEEE, 2016:1-6.
[36] YAN J, ZHENG W, CUI Z, et al. A joint convolutional bidirectional LSTM framework for facial expression recognition[J]. IEICE Transactions on Information and Systems, 2018, 101(4):1217-1220.
[37] FERNANDEZ P D M, PEÑA F A G, REN T I, et al. FERAtt:facial expression recognition with attention net[EB/OL].[2019-02-08]. https://arxiv.org/pdf/1902.03284.pdf.
[38] SONG X, BAO H. Facial expression recognition based on video[C]//AIPR 2017:Proceedings of the 2016 IEEE Applied Imagery Pattern Recognition Workshop. Washington, DC:IEEE Computer Society, 2016, 1:1-5.
[39] ZHANG K, HUANG Y, DU Y, et al. Facial expression recognition based on deep evolutional spatial-temporal networks[J]. IEEE Transactions on Image Processing, 2017, 26(9):4193-4203. |