Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (3): 750-756.DOI: 10.11772/j.issn.1001-9081.2021040807
• 2021 CCF Conference on Artificial Intelligence (CCFAI 2021) • Previous Articles
Dingkang YANG1,2,3, Shuai HUANG1,2,3, Shunli WANG1,2,3, Peng ZHAI1,2,3, Yidan LI1,2,3, Lihua ZHANG1,2,3,4,5()
Received:
2021-05-18
Revised:
2021-07-06
Accepted:
2021-07-09
Online:
2021-11-09
Published:
2022-03-10
Contact:
Lihua ZHANG
About author:
YANG Dingkang, born in 1996, Ph. D. candidate. His research interests include computer vision, multimodal emotion recognition, affective computing.Supported by:
杨鼎康1,2,3, 黄帅1,2,3, 王顺利1,2,3, 翟鹏1,2,3, 李一丹1,2,3, 张立华1,2,3,4,5()
通讯作者:
张立华
作者简介:
杨鼎康(1996—),男,陕西城固人,博士研究生,主要研究方向:计算机视觉、多模态情绪识别、情感计算基金资助:
CLC Number:
Dingkang YANG, Shuai HUANG, Shunli WANG, Peng ZHAI, Yidan LI, Lihua ZHANG. EE-GAN:facial expression recognition method based on generative adversarial network and network integration[J]. Journal of Computer Applications, 2022, 42(3): 750-756.
杨鼎康, 黄帅, 王顺利, 翟鹏, 李一丹, 张立华. 基于生成对抗网络和网络集成的面部表情识别方法EE-GAN[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 750-756.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040807
数据集 | Angry | Disgust | Fear | Happy | Neutral | Sadness | Surprise | Contempt |
---|---|---|---|---|---|---|---|---|
GAN+Basic | 800 | 653 | 750 | 800 | 740 | 731 | 780 | 346 |
FER2013 | 3 995 | 56 | 496 | 895 | 653 | 415 | 607 | — |
CK+ | 135 | 177 | 75 | 207 | — | 84 | 249 | 54 |
JAFFE | — | 29 | 31 | 30 | 30 | 30 | 30 | — |
Tab. 1 Numbers of different expressions’s images on FER2013,CK+, JAFFE and integrated datasets
数据集 | Angry | Disgust | Fear | Happy | Neutral | Sadness | Surprise | Contempt |
---|---|---|---|---|---|---|---|---|
GAN+Basic | 800 | 653 | 750 | 800 | 740 | 731 | 780 | 346 |
FER2013 | 3 995 | 56 | 496 | 895 | 653 | 415 | 607 | — |
CK+ | 135 | 177 | 75 | 207 | — | 84 | 249 | 54 |
JAFFE | — | 29 | 31 | 30 | 30 | 30 | 30 | — |
模型 | FER2013 | CK+ | JAFFE |
---|---|---|---|
LPP | 0.752 | 0.760 | 0.798 |
D-GPLVM | 0.779 | 0.797 | 0.850 |
GPLRF | 0.793 | 0.829 | 0.874 |
GMLDA | 0.817 | 0.834 | 0.882 |
AlexNet | 0.536 | 0.557 | 0.665 |
VGG13 | 0.621 | 0.594 | 0.708 |
VGG16 | 0.653 | 0.674 | 0.726 |
ResNet18 | 0.648 | 0.665 | 0.730 |
ResNet34 | 0.674 | 0.673 | 0.744 |
ResNet18* | 0.695 | 0.691 | 0.738 |
ResNet34* | 0.736 | 0.748 | 0.756 |
EE⁃GAN | 0.821 | 0.848 | 0.915 |
Tab. 2 Accuracies of different network models on FER2013, CK+, and JAFFE datasets
模型 | FER2013 | CK+ | JAFFE |
---|---|---|---|
LPP | 0.752 | 0.760 | 0.798 |
D-GPLVM | 0.779 | 0.797 | 0.850 |
GPLRF | 0.793 | 0.829 | 0.874 |
GMLDA | 0.817 | 0.834 | 0.882 |
AlexNet | 0.536 | 0.557 | 0.665 |
VGG13 | 0.621 | 0.594 | 0.708 |
VGG16 | 0.653 | 0.674 | 0.726 |
ResNet18 | 0.648 | 0.665 | 0.730 |
ResNet34 | 0.674 | 0.673 | 0.744 |
ResNet18* | 0.695 | 0.691 | 0.738 |
ResNet34* | 0.736 | 0.748 | 0.756 |
EE⁃GAN | 0.821 | 0.848 | 0.915 |
模型 | FER2013 | CK+ | JAFFE |
---|---|---|---|
VGG13+VGG16 | 0.758 | 0.769 | 0.794 |
VGG13+ResNet18 | 0.762 | 0.775 | 0.806 |
VGG16+ResNet18 | 0.765 | 0.780 | 0.812 |
Ens-Net | 0.774 | 0.783 | 0.827 |
EE-GAN | 0.821 | 0.848 | 0.915 |
Tab. 3 Ablation experiment results on FER2013, CK+, and JAFFE datasets
模型 | FER2013 | CK+ | JAFFE |
---|---|---|---|
VGG13+VGG16 | 0.758 | 0.769 | 0.794 |
VGG13+ResNet18 | 0.762 | 0.775 | 0.806 |
VGG16+ResNet18 | 0.765 | 0.780 | 0.812 |
Ens-Net | 0.774 | 0.783 | 0.827 |
EE-GAN | 0.821 | 0.848 | 0.915 |
1 | DARWIN C, PRODGER P. The expression of the emotions in man and animals[M]. Oxford: Oxford University Press, 1998:245-276. |
2 | MEHRABIAN A, RUSSELL J A. An Approach to Environmental Psychology[M]. Cambridge: MIT Press, 1974:336-338. 10.1037/h0035915 |
3 | REVINA I M, EMMANUEL W R S. A survey on human face expression recognition techniques[J]. Journal of King Saud University - Computer and Information Sciences, 2020, 33(6):619-628. 10.1016/j.jksuci.2018.03.015 |
4 | WU M, SU W, CHEN L, et al. Weight-adapted convolution neural network for facial expression recognition in human-robot interaction[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(3):1473-1484. 10.1109/TSMC.2019.2897330 |
5 | MA L, CHEN W, FU X, et al. Emotional expression and micro-expression recognition in depressive patients[J]. Chinese Science Bulletin, 2018, 63(20): 2048-2056. 10.1360/n972017-01272 |
6 | SAJJAD M, NASIR M, ULLAH F U M, et al. Raspberry Pi assisted facial expression recognition framework for smart security in law-enforcement services[J]. Information Sciences, 2019, 47(9): 416-431. 10.1016/j.ins.2018.07.027 |
7 | 杨明中.基于权值融合虚拟样本的LBP特征人脸识别算法[J].信息技术与信息化,2021,28(4):86-88. 10.3969/j.issn.1672-9528.2021.04.025 |
YANG M Z. LBP feature face recognition algorithm based on weight fusion virtual samples[J].Information Technology and Informatization, 2021,28(4):86-88. 10.3969/j.issn.1672-9528.2021.04.025 | |
8 | ZHAO G, PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928. 10.1109/tpami.2007.1110 |
9 | ZHI R, FLIERL M, RUAN Q, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 41(1): 38-52. 10.1109/tsmcb.2010.2044788 |
10 | 宋彩风,刘伟锋,王延江.基于稀疏学习的人脸表情识别[J].山东科技大学学报(自然科学版), 2013, 32(3):28-34. 10.3969/j.issn.1672-3767.2013.03.006 |
SONG C F, LIU W F, WANG Y J. Face expression recognition based on sparse learning[J]. Journal of Shandong University of Science and Technology (Natural Science), 2013, 32(3):28-34. 10.3969/j.issn.1672-3767.2013.03.006 | |
11 | GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[C]// Proceedings of the 2013 International Conference on International Conference on Neural Information Processing. Cham: Springer, 2013: 117-124. 10.1007/978-3-642-42051-1_16 |
12 | DHALL A, RAMANA MURTHY O V, GOECKE R, et al. Video and image based emotion recognition challenges in the wild: EmotiW 2015[C]// Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. New York: ACM, 2015: 423-426. 10.1145/2818346.2829994 |
13 | DHALL A, GOECKE R, JOSHI J, et al. EmotiW 2016: video and group-level emotion recognition challenges[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York: ACM, 2016: 427-432. 10.1145/2993148.2997638 |
14 | DHALL A, GOECKE R, GHOSH S, et al. From individual to group-level emotion recognition: EmotiW 5.0[C]// Proceedings of the 19th ACM International Conference on Multimodal Interaction. New York: ACM, 2017: 524-528. 10.1145/3136755.3143004 |
15 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. 10.1145/3065386 |
16 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-06-22]. . 10.5244/c.28.6 |
17 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
18 | LI S, DENG W. Deep facial expression recognition: a survey[J]. IEEE Transactions on Affective Computing, 2020, PP(99):1. 10.1109/taffc.2020.2981446 |
19 | MARECHAL C, MIKOAJEWSKI D, TYBUREK K, et al. Survey on AI-based multimodal methods for emotion detection[J]. High-Performance Modelling and Simulation for Big Data Applications, 2019, 16(1): 186-197. 10.1007/978-3-030-16272-6_11 |
20 | KUMARI J, RAJESH R, POOJA K. Facial expression recognition: a survey[C]// Proceedings of the 2nd International Symposium on Computer Vision and the Internet. Cham: Springer, 2015:486-491. 10.1016/j.procs.2015.08.011 |
21 | 朱娅妮, 杜加友. 基于多特征融合的人脸表情识别[J].杭州电子科技大学学报(自然科学版), 2009, 29(5):141-144. |
ZHU Y N, DU J Y. Facial expression recognition based on multi-feature fusion [J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2009, 29(5):141-144. | |
22 | PANTIC M, VALSTAR M, RADEMAKER R, et al. Web-based database for facial expression analysis[C]// Proceedings of 2005 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2005: 5-10. |
23 | VALSTAR M, PANTIC M. Induced disgust, happiness and surprise: an addition to the MMI facial expression database[EB/OL].[2020-06-20]. . |
24 | DHALL A, GOECKE R, GEDEON T, et al. A semi-automatic method for collecting richly labelled large facial expression databases from movies[C]// Proceedings of the 16th International Conference on Multimodal Interaction. New York: ACM, 2012: 34-41. 10.1109/mmul.2012.26 |
25 | CIREGAN D, MEIER U, SCHMIDHUBER J. Multi-column deep neural networks for image classification[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3642-3649. 10.1109/cvpr.2012.6248110 |
26 | BARGAL S A, BARSOUM E, FERRER C C, et al. Emotion recognition in the wild from videos using images[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction.New York: ACM, 2016: 433-436. 10.1145/2993148.2997627 |
27 | HAMESTER D, BARROS P, WERMTER S. Face expression recognition with a 2-channel convolutional neural network[C]// Proceedings of the 2015 International Joint Conference on Neural Networks. Piscataway: IEEE, 2015: 1-8. 10.1109/ijcnn.2015.7280539 |
28 | YANG H, CIFTCI U, YIN L. Facial expression recognition by de-expression residue learning[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2168-2177. 10.1109/cvpr.2018.00231 |
29 | CHEN J, KONRAD J, ISHWAR P. VGAN-based image representation learning for privacy-preserving facial expression recognition[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 1570-1579. 10.1109/cvprw.2018.00207 |
30 | YANG H, ZHANG Z, YIN L. Identity-adaptive facial expression recognition through expression regeneration using conditional generative adversarial networks[C]// Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition. Piscataway: IEEE, 2018: 294-301. 10.1109/fg.2018.00050 |
31 | WANG K, PENG X, YANG J, et al. Suppressing uncertainties for large-scale facial expression recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6897-6906. 10.1109/cvpr42600.2020.00693 |
32 | 王建霞,陈慧萍,李佳泽,等.基于多特征融合卷积神经网络的人脸表情识别[J].河北科技大学学报,2019,40(6):540-547. 10.7535/hbkd.2019yx06012 |
WANG J X, CHEN H P, LI J Z, et al. Face expression recognition based on multi-feature fusion convolutional neural network[J]. Journal of Hebei University of Science and Technology,2019,40(6):540-547. 10.7535/hbkd.2019yx06012 | |
33 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Advances in Neural Information Processing Systems 27. Cambridge: MIT Press, 2014: 2672-2680. |
34 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2020-06-20]. . |
35 | LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression[C]// Proceedings of the 2010 Computer Vision & Pattern Recognition Workshops. Piscataway: IEEE, 2010:94-101. 10.1109/cvprw.2010.5543262 |
36 | LYONS M J, AKAMATSU S, KAMACHI M G, et al. Coding facial expressions with Gabor wavelets[C]// Proceedings of the 3rd International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 1998:200-205. |
37 | SAGONAS C, ANTONAKOS E, TZIMIROPOULOS G, et al. 300 faces In-The-Wild challenge: database and results[J]. Image & Vision Computing, 2016, 47(10):3-18. 10.1016/j.imavis.2016.01.002 |
38 | HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]// Proceedings of the 2016 European Conference on Computer Vision. Cham: Springer, 2016:630-645. 10.1007/978-3-319-46493-0_38 |
39 | SAXENA D, CAO J. Generative Adversarial Networks (GANs): challenges, solutions, and future directions[J]. ACM Computing Surveys, 2022,54(3):Article No. 63. |
40 | LIU S, WANG T, BAU D, et al. Diverse image generation via self-conditioned GANs[C]// Proceedings of the 2020 Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14286-14295. 10.1109/cvpr42600.2020.01429 |
41 | ZHENG Z, YANG F, TAN W, et al. Gabor feature-based face recognition using supervised locality preserving projection[J]. Signal Processing, 2017, 87(10):2473-2483. |
42 | URTASUN R, DARRELL T. Discriminative Gaussian process latent variable model for classification [C]// Proceedings of the 24th International Conference on Machine learning. New York: ACM, 2007:927-934. 10.1145/1273496.1273613 |
43 | ZHONG G, LI W J, YEUNG D Y, et al. Gaussian process latent random field [C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. Cham: Springer, 2010:679-684. 10.1609/aaai.v34i07.7000 |
44 | BISHOP C. Pattern Recognition and Machine Learning[M]. Cham: Springer, 2006: 257-261. 10.1007/978-0-387-45528-0_7 |
45 | ZHANG F, ZHANG T, MAO Q, et al. Joint pose and expression modeling for facial expression recognition[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3359-3368. 10.1109/cvpr.2018.00354 |
[1] | Wanying YU, Meiyu LIANG, Xiaoxiao WANG, Zheng CHEN, Xiaowen CAO. Student expression recognition and intelligent teaching evaluation in classroom teaching videos based on deep attention network [J]. Journal of Computer Applications, 2022, 42(3): 743-749. |
[2] | Pinxue WANG, Shaobing ZHANG, Miao CHENG, Lian HE, Xiaoshan QIN. Coin surface defect detection algorithm based on deformable convolution and adaptive spatial feature fusion [J]. Journal of Computer Applications, 2022, 42(2): 638-645. |
[3] | Runze WANG, Yueqin ZHANG, Qiqi QIN, Zehua ZHANG, Xumin GUO. Multi-aspect multi-attention fusion of molecular features for drug-target affinity prediction [J]. Journal of Computer Applications, 2022, 42(1): 325-332. |
[4] | WANG Wei, ZHAO Erping, CUI Zhiyuan, SUN Hao. Disambiguation method of multi-feature fusion based on HowNet sememe and Word2vec word embedding representation [J]. Journal of Computer Applications, 2021, 41(8): 2193-2198. |
[5] | GUAN Qijie, ZHANG Ting, LI Deya, ZHOU Shaojing, DU Yi. Indefinite reconstruction method of spatial data based on multi-resolution generative adversarial network [J]. Journal of Computer Applications, 2021, 41(8): 2306-2311. |
[6] | SUN Xiao, XU Jindong. Remote sensing image dehazing method based on cascaded generative adversarial network [J]. Journal of Computer Applications, 2021, 41(8): 2440-2444. |
[7] | ZHOU Xianbing, FAN Xiaochao, REN Ge, YANG Yong. Automated English essay scoring method based on multi-level semantic features [J]. Journal of Computer Applications, 2021, 41(8): 2205-2211. |
[8] | WU Lidan, XUE Yuyang, TONG Tong, DU Min, GAO Qinquan. Image colorization algorithm based on foreground semantic information [J]. Journal of Computer Applications, 2021, 41(7): 2048-2053. |
[9] | DU Yan, LYU Liangfu, JIAO Yichen. Fuzzy prototype network based on fuzzy reasoning [J]. Journal of Computer Applications, 2021, 41(7): 1885-1890. |
[10] | TANG Guihua, SUN Lei, MAO Xiuqing, DAI Leyu, HU Yongjin. Generative adversarial network synthesized face detection based on deep alignment network [J]. Journal of Computer Applications, 2021, 41(7): 1922-1927. |
[11] | WANG Xianwu, ZHANG Ting, JI Xin, DU Yi. 3D shale digital core reconstruction method based on deep convolutional generative adversarial network with gradient penalty [J]. Journal of Computer Applications, 2021, 41(6): 1805-1811. |
[12] | LI Yanzhi, FAN Yong, GAO Lin. Anomaly detection of oil drilling water flow based on shape flow [J]. Journal of Computer Applications, 2021, 41(6): 1842-1848. |
[13] | ZHANG Sun, YIN Chunyong. Sequential multimodal sentiment analysis model based on multi-task learning [J]. Journal of Computer Applications, 2021, 41(6): 1631-1639. |
[14] | GUO Maozu, YANG Qiannan, ZHAO Lingling. Image generation based on conditional-Wassertein generative adversarial network [J]. Journal of Computer Applications, 2021, 41(5): 1432-1437. |
[15] | SUN Heli, SUN Yuzhu, ZHANG Xiaoyun. Event description generation based on generative adversarial network [J]. Journal of Computer Applications, 2021, 41(5): 1256-1261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||