[1] ZHANG K,ZHANG Z,LI Z,et al. Joint face detection and alignment using multitask cascaded convolutionalnetworks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503. [2] JESORSKY O,KIRCHBERG K J,FRISCHHOLZ R W. Robust face detection using the Hausdorff distance[C]//Proceedings of the 2001 International Conference on Audio-and Video-based Biometric Person Authentication,LNCS 2091. Berlin:Springer, 2001:90-95. [3] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:815-823. [4] TAIGMAN Y,YANG M,RANZATO M,et al. DeepFace:closing the gap to human-level performance in face verification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:1701-1708. [5] DENG J,GUO J,XUE N,et al. ArcFace:additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:4685-4694. [6] WANG F,XIANG X,CHENG J,et al. NormFace:L2 hypersphere embedding for face verification[C]//Proceedings of the 201725th ACM International Conference on Multimedia. New York:ACM, 2017:1041-1049. [7] WOLF L, HASSNER T, MAOZ I. Face recognition in unconstrained videos with matched background similarity[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2011:529-534. [8] SUN Y,WANG X,TANG X. Deep learning face representation from predicting 10000 classes[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:1891-1898. [9] LIU W,WEN Y,YU Z,et al. SphereFace:deep hypersphere embedding for face recognition[C]//Proceedings of the 201730th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6738-6746. [10] HUANG Y,SHEN P,TAI Y,et al. Distribution distillation loss:generic approach for improving face recognition from hard samples[EB/OL].[2020-03-25]. https://arxiv.org/pdf/2002.03662v1.pdf. [11] BOULKENAFET Z,KOMULAINEN J,HADID A. Face antispoofing based on color texture analysis[C]//Proceedings of the 2015 IEEE International Conference on Image Processing. Piscataway:IEEE,2015:2636-2640. [12] BOULKENAFET Z,KOMULAINEN J,HADID A. Face spoofing detection using colour texture analysis[J]. IEEE Transactions on Information Forensics and Security,2016,11(8):1818-1830. [13] LI X,KOMULAINEN J,ZHAO G,et al. Generalized face antispoofing by detecting pulse from face videos[C]//Proceedings of the 201623rd International Conference on Pattern Recognition. Piscataway:IEEE,2016:4244-4249. [14] LIU S, LAN X, YUEN P C. Remote photoplethysmography correspondence feature for 3D mask face presentation attack detection[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11220. Cham:Springer, 2018:577-594. [15] XU Y,PRICE T,FRAHM J M,et al. Virtual U:defeating face liveness detection by building virtual models from your public photos[C]//Proceedings of the 201625th USENIX Security Symposium. Berkeley:USENIX Association,2016:497-512. [16] SINGH A K,JOSHI P,NANDI G C. Face recognition with liveness detection using eye and mouth movement[C]//Proceedings of the 2014 International Conference on Signal Propagation and Computer Technology. Piscataway:IEEE,2014:592-597. [17] ATOUM Y,LIU Y,JOURABLOO A,et al. Face anti-spoofing using patch and depth-based CNNs[C]//Proceedings of the 2017 IEEE International Joint Conference on Biometrics. Piscataway:IEEE,2017:319-328. [18] ZHANG P,ZOU F,WU Z,et al. FeatherNets:convolutional neuralnetworks as light as feather for face anti-spoofing[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2019:1574-1583. [19] IANDOLA F N,HAN S,MOSKEWICZ M W,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2020-03-25]. https://arxiv.org/pdf/1602.07360.pdf. [20] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1800-1807. [21] SANDLER M,HOWARD A,ZHU M,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520. [22] MA N,ZHANG X,ZHENG H,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11218. Cham:Springer,2018:122-138. [23] HOWARD A,SANDLER M,CHEN B,et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:1314-1324. [24] OJALA T,PIETIKÄINEN M,MÄENPÄÄ T. Gray scale and rotation invariant texture classification with local binary patterns[C]//Proceedings of the 2000 European Conference on Computer Vision,LNCS 1842. Berlin:Springer,2000:404-420. [25] OJALA T,PIETIKÄINEN M,MÄENPÄÄ T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [26] ZHANG Z,YAN J,LIU S,et al. A face antispoofing database with diverse attacks[C]//Proceedings of the 20125th IAPR International Conference on Biometrics. Piscataway:IEEE, 2012:26-31. [27] COSTA-PAZO A, BHATTACHARJEE S, VÁZQUEZFERNÁNDEZ E,et al. The replay-mobile face presentation-attack database[C]//Proceedings of the 201615th International Conference of the Biometrics Special Interest Group. Piscataway:IEEE,2016:1-7. [28] MÄÄTTÄ J,HADID A,PIETIKÄIEN M. Face spoofing detection from single images using micro-texture analysis[C]//Proceedings of the 2011 International Joint Conference on Biometrics. Piscataway:IEEE,2011:1-7. |