[1] 刘强, 秦泗钊. 过程工业大数据建模研究展望[J]. 自动化学报, 2016,42(2):161-71.(LIU Q,QIN S J. Perspectives on big data modeling of process industries[J]. Acta Automatica Sinica,2016, 42(2):161-171.) [2] 贾立, 柴宗君. 火电机组主蒸汽温度神经模糊-PID串级控制[J]. 控制工程,2013,20(5):877-881.(JIA L,CHAI Z J. Neuro-fuzzy based PID cascade control of main steam temperature of fire electrical engineering set[J]. Control Engineering of China, 2013,20(5):877-881.) [3] 冯晓露. 智能控制在电厂主蒸汽温度控制系统中的应用研究[D]. 杭州:浙江大学,2006:21-25.(FENG X L. Application of intelligent control in main steam temperature control system of power plant[D]. Hangzhou:Zhejiang University,2006:21-25.) [4] 吴吕斌, 罗自学, 周怀春, 等. 主汽温控制现状及其新方法应用研究[J]. 电站系统工程,2009,25(1):5-7,10.(WU L B,LUO Z X,ZHOU H C,et al. Summary of steam temperature control and its new application[J]. Power System Engineering,2009,25(1):5-7,10.) [5] 王国玉, 韩璞, 王东风, 等. PFC-PID串级控制在主汽温控制系统中的应用研究[J]. 中国电机工程学报,2002,22(12):50-55. (WANG G Y,HAN P,WANG D F,et al. Studies and applications of PFC-PID cascade control strategy in main steam temperature control system[J]. Proceedings of the CSEE,2002,22(12):50-55.) [6] STAEHELIN C,SCHULTZE M,KONDOROSI É,et al. Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chattiness[J]. The Plant Journal,1994,5(3):319-330. [7] GNANAPRAGASAM N V,REDDY B V. Numerical modeling of bed-to-wall heat transfer in a circulating fluidized bedcombustor based on cluster energy balance[J]. International Journal of Heat and Mass Transfer,2008,51(21/22):5260-5268. [8] 齐敏芳. 大数据技术及其在电站机组分析中的应用[D]. 北京:华北电力大学,2016:27-28.(QI M F. Big data technology and its application on the analysis of power plant units[D]. Beijing:North China Electric Power University,2016:27-28.) [9] BUCZYŃSKI R, WEBER R, SZLĘK A. Innovative design solutions for small-scale domestic boilers:combustion improvements using a CFD-based mathematical model[J]. Journal of the Energy Institute,2015,88(1):53-63. [10] PISICA I,TAYLOR G,LIPAN L. Feature selection filter for classification of power system operating states[J]. Computers and Mathematics with Applications,2013,66(10):1795-1807. [11] WANG F,MA S,WANG H,et al. A hybrid model integrating improved flower pollination algorithm-based feature selection and improved random forest for NOx emission estimation of coal-fired power plants[J]. Measurement,2018,125:303-312. [12] LV Y,HONG F,YANG T,et al. A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data[J]. Energy,2017,124:284-294. [13] SHAKIL M,ELSHAFEI M,HABIB M A,et al. Soft sensor for NO x and O 2 using dynamic neural networks[J]. Computers & Electrical Engineering,2009,35(4):578-586. [14] XIONG W,LI Y,ZHAO Y,et al. Adaptive soft sensor based on time difference Gaussian process regression with local time-delay reconstruction[J]. Chemical Engineering Research and Design, 2017,117:670-680. [15] 李林劼. 数据驱动的火电机组建模及自动化部署支撑系统研究[D]. 杭州:浙江理工大学,2018:41-50.(LI L J. Data driven thermal power unit modeling and automated deployment support system[D]. Hangzhou:Zhejiang Sci-Tech University, 2018:41-50.) [16] KIM S,KIM H. A new metric of absolute percentage error for intermittent demand forecasts[J]. International Journal of Forecasting,2016,32(3):669-679. |