[1] ANSORGE W J. Next-generation DNA sequencing techniques[J]. New Biotechnology,2009,25(4):195-203. [2] WANG X,ZHANG J,LI G Z. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble[J]. BMC Bioinformatics,2015,16(S12):No. S1. [3] WAN S,MAK M W,KUNG S Y. mGOASVM:multi-label protein subcellular localization based on gene ontology and support vector machines[J]. BMC Bioinformatics,2012,13:No. 290. [4] WEI L,TANG J,ZOU Q. Local-DPP:an improved DNA-binding protein prediction method by exploring local evolutionary information[J]. Information Sciences,2017,384:135-144. [5] WAN S,MAK M W,KUNG S Y. HybridGO-Loc:mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins[J]. PloS One,2014,9(3):No. e89545. [6] WEI L Y,ZOU Q. Recent progress in machine learning-based methods for protein fold recognition[J]. International Journal of Molecular Sciences,2016,17(12):No. 2118. [7] 张颖婕. 基于支持向量机的蛋白质序列信息提取及亚细胞定位研究[D]. 昆明:云南大学,2019:37-56.(ZHANG Y J. Research on sequence information extraction methods and subcellular localization of proteins based on SVM[D]. Kunming:Yunnan University,2019:37-56.) [8] RAHHAL M M A,BAZI Y,ALHICHRI H,et al. Deep learning approach for active classification of electrocardiogram signals[J]. Information Sciences,2016,345:340-354. [9] YUAN X,HUANG B,WANG Y,et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics,2018,14(7):3235-3243. [10] SWIETOJANSKI P,GHOSHAL A,RENALS S. Convolutional neural networks for distant speech recognition[J]. IEEE Signal Processing Letters,2014,21(9):1120-1124. [11] WEN M,ZHANG Z,NIU S,et al. Deep-learning-based drugtarget interaction prediction[J]. Journal of Proteome Research, 2017,16(4):1401-1409. [12] ALIPANAHI B,DELONG A,WEIRAUCH M T,et al. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning[J]. Nature Biotechnology,2015,33(8):831-838. [13] LIU B,LI C,YAN K. DeepSVM-fold:protein fold recognition bycombining support vector machines and pairwise sequence similarity scores generated by deep learning networks[J]. Briefings in Bioinformatics,2019, 21(5):1733-1741. [14] WEI L,DING Y,SU R,et al. Prediction of human protein subcellular localization using deep learning[J]. Journal of Parallel and Distributed Computing,2018,117:212-217. [15] CHOU K C. Prediction of protein cellular attributes using pseudoamino acidcomposition[J]. Proteins:Structure,Function,and Bioinformatics,2001,43(3):246-255. [16] JONES D T. Protein secondary structure prediction based on position-specific scoring matrices[J]. Journal of Molecular Biology,1999,292(2):195-202. [17] ALTSCHUL S F,MADDEN T L,SCHÄFFER A A,et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Research,1997,25(17):3389-3402. [18] XIANG Q, LIAO B, LI X, et al. Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine[J]. Artificial Intelligence in Medicine,2017,78:41-46. [19] SHEN H,CHOU K C. Nuc-PLoc:a new web-server for predicting protein subnuclear localization by fusing PseAAcomposition and PsePSSM[J]. Protein Engineering Design and Selection,2007,20(11):561-567. [20] SHEN J,ZHANG J,LUO X,et al. Predicting protein-protein interactions based only on sequences information[J]. Proceedings of the National Academy of Sciences of the Untied Statas of America,2007,104(11):4337-4341. [21] VINCENT P,LAROCHELLE H,LAJOIE I,et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research,2010,11:3371-3408. [22] VINCENT P,LAROCHELLE H,BENGIO Y,et al. Extracting andcomposing robust features with denoising autoencoders[C]//Proceedings of 25th International Conference on Machine Learning. New York:ACM,2008:1096-1103. [23] JAVED F,HAYAT M. Predicting subcellular localization of multilabel proteins by incorporating the sequence features into Chou's PseAAC[J]. Genomics,2019,111(6):1325-1332. [24] CHOU K C. Some remarks on predicting multi-label attributes in molecular biosystems[J]. Molecular BioSystems,2013,9(6):1092-1100. [25] XIAO X, WU Z C, CHOU K C. iLoc-Virus:a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites[J]. Journal of Theoretical Biology,2011,284(1):42-51. [26] LI L,ZHANG Y,ZOU L,et al. Prediction of protein subcellular multi-localization based on the general form of Chou's pseudo amino acidcomposition[J]. Protein and Peptide Letters,2012,19(4):375-387. [27] WU Z,XIAO X,CHOU K C. iLoc-Plant:a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites[J]. Molecular BioSystems,2011,7(12):3287-3297. |